Araştırma Makalesi
BibTex RIS Kaynak Göster

Impact of Massive Trauma on Brain Structures: MRI Volumetric Analysis Post-February 6 Earthquake

Yıl 2025, Cilt: 22 Sayı: 1, 165 - 171, 26.03.2025
https://doi.org/10.35440/hutfd.1635291

Öz

Background: This study aims to investigate the impact of the February 6 earthquake on brain structures, particularly mood centers, using MRI volumetric analysis.
Materials and Methods: In this retrospective study, 20 neurology clinic patients who were treated at a neurology clinic and underwent brain MRI both before and after the earthquake (2022–2023). MRI scans were analyzed within one year prior to and after the disaster. Patient data included age, gender, MRI indications and medical history. Inclusion criteria required participants to have experienced headaches but excluded those with neurodegenerative diseases, head trauma, or other structural brain pathologies. The volBrain method was used to assess total brain, white and grey matter, cerebrospinal fluid, limbic system (hippocampus, parahippocampal gyrus, amygdala, hypothalamus, cingulate gyrus, entorhinal cortex), pref-rontal cortex, cerebellum, and thalamus via 3T MRI T1 sequences. All participants had experienced first-degree relative loss or home destruction.
Results: The study group comprised 65% women and 35% men, with a mean age of 42.15 ± 8.41 years. Significant volumetric changes were observed in several brain regions post-earthquake. White matter volume decreased significantly (p=0.011), while CSF volume increased (p=0.017), and total brain volume showed a significant reduction (p=0.025). The cerebellum exhibited significant volume reductions, inclu-ding total volume (p=0.023), as well as the right (p=0.021) and left hemispheres (p=0.029). Similarly, the thalamus demonstrated significant reductions in total volume (p=0.008), right hemisphere (p=0.009), and left hemisphere (p=0.010). Conversely, the posterior cingulate gyrus (PCgG) showed significant volume increases in total (p=0.007), right (p=0.023), and left hemispheres (p=0.012).
Conclusions: The findings reveal significant volumetric changes in specific brain regions suggesting neurobi-ological effects of acute stressor trauma caused by the earthquake. These changes highlight the need for further studies to understand the mechanisms underlying these alterations and to develop interventions aimed at mitigating the long-term effects of such traumatic events.

Keywords: Limbic system, Mrı volumetric analysis, Earthquake, Disaster, Massive trauma, Neuroimaging

Etik Beyan

Ethical approval was obtained from the Mustafa Kemal University Local Ethics Committee (Approval No: 2024.07.09/10), accordance with the principles stated in the Declaration of Helsinki.

Destekleyen Kurum

HATAY MUSTAFA KEMAL ÜNİVERSİTESİ

Proje Numarası

2024.07.09/10

Kaynakça

  • 1. Theodoratou M, Kougioumtzis GA, Yotsidi V, Sofologi M, Katsarou D, Megari K. Neuropsychological Consequences of Massive Trauma: Implications and Clinical Interventions. Me-dicina. 2023;59(12).
  • 2. Efendi F, Indarwati R, Aurizki GE, Susanti IA, Fajar Maulana AE. Policymakers’ Perspectives on Responding to the Elderly's Mental Health Needs in Post-Disaster Situations. Journal of Public Health Research. 2022;11(1).
  • 3. Alghamdi AA. The Psychological Challenges of Emergency Medical Service Providers During Disasters: A Mini-Review February 2022. Frontiers in Psychiatry. 2022;13.
  • 4. Cofini V, Carbonelli A, Cecilia MR, Binkin N, di Orio F. Post traumatic stress disorder and coping in a sample of adult survivors of the Italian earthquake. Psychiatry Research. 2015;229(1-2):353-8.
  • 5. Carmassi C, Dell'Oste V, Bertelloni CA, et al. Disrupted Rhythmicity and Vegetative Functions Relate to PTSD and Gender in Earthquake Survivors. Frontiers in Psychiatry. 2020;11.
  • 6. Güngörmüş Z, Özgüç S. Psychosocial problems observed in older adults after disaster. Psychogeriatrics. 2025;25(2):e70001..
  • 7. Heanoy EZ, Brown NR. Impact of Natural Disasters on Mental Health: Evidence and Implications. Healthcare. 2024;12(18).
  • 8. Akiki TJ, Abdallah CG. Mapping the Depressed Brain Under Stress Using Multimodal Neuroimaging. American Journal of Psychiatry. 2024;181(7):578-80.
  • 9. Lui S, Huang X, Chen L, et al. High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. Proceedings of the National Academy of Sciences. 2009;106(36):15412-7.
  • 10. Ringwald KG, Pfarr JK, Stein F, et al. Association between stressful life events and grey matter volume in the medial prefrontal cortex: A 2‐year longitudinal study. Human Brain Mapping. 2022;43(11):3577-84.
  • 11. Lemke H, Probst S, Warneke A, et al. The Course of Disease in Major Depressive Disorder Is Associated With Altered Ac-tivity of the Limbic System During Negative Emotion Proces-sing. Biological Psychiatry: Cognitive Neuroscience and Neu-roimaging. 2022;7(3):323-32.
  • 12. Manjón JV, Coupé P. volBrain: An Online MRI Brain Volu-metry System. Frontiers in Neuroinformatics. 2016;10.
  • 13. Manjón JV, Romero JE, Vivo-Hernando R, et al. vol2Brain: A New Online Pipeline for Whole Brain MRI Analysis. Frontiers in Neuroinformatics. 2022;16.
  • 14. Abraham M, Mundorf A, Brodmann K, Freund N. Unraveling the mystery of white matter in depression: A translational perspective on recent advances. Brain and Behavior. 2022;12(7):e2629.
  • 15. Meng L, Shan T, Li K, Gong Q. Long-term tract-specific white matter microstructural changes after acute stress. Brain Ima-ging and Behavior. 2020;15(4):1868-75.
  • 16. McEwen Bruce S, Morrison John H. The Brain on Stress: Vulnerability and Plasticity of the Prefrontal Cortex over the Life Course. Neuron. 2013;79(1):16-29.
  • 17. Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin Iii EF, Liotta LA. CSF proteome: a protein repository for poten-tial biomarker identification. Expert Review of Proteomics. 2014;2(1):57-70.
  • 18. Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventri-culomegaly and hydrocephalus. Fluids and Barriers of the CNS. 2024;21(1).
  • 19. Batail JM, Coloigner J, Soulas M, Robert G, Barillot C, Drapier D. Structural abnormalities associated with poor outcome of a major depressive episode: The role of thalamus. Psychiatry Research: Neuroimaging. 2020;305111158.
  • 20. Hong W, Li M, Liu Z, et al. Heterogeneous alterations in thalamic subfields in major depression disorder. Journal of Affective Disorders. 2021;295:1079-86.
  • 21. Lange I, Kasanova Z, Goossens L, et al. The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neu-roscience & Biobehavioral Reviews. 2015;59:83-91.
  • 22. Blithikioti C, Duek O, Gordon C, et al. Cerebellar Contributi-ons to Traumatic Autobiographical Memory in People with Post-Traumatic Stress Disorder. The Cerebellum. 2024;23(6):2332-40.
  • 23. Pitman RK, Rasmusson AM, Koenen KC, et al. Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience. 2012;13(11):769-87.
  • 24. Zhang L, Li W, Shu N, et al. Increased white matter integrity of posterior cingulate gyrus in the evolution of post-traumatic stress disorder. Acta Neuropsychiatrica. 2014;24(1):34-42.
  • 25. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(1):12-32.
  • 26. Anderson MC, Floresco SB. Prefrontal-hippocampal interacti-ons supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology. 2021;47(1):180-95.
  • 27. Afridi R, Suk K. Microglial Responses to Stress-Induced Dep-ression: Causes and Consequences. Cells. 2023;12(11).
  • 28. Burtscher J, Niedermeier M, Hüfner K, et al. The interplay of hypoxic and mental stress: Implications for anxiety and dep-ressive disorders. Neuroscience & Biobehavioral Reviews. 2022;138.
  • 29. Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. The Stressed CNS: When Glucocorticoids Aggravate Inflammation. Neuron. 2009;64(1):33-9.
  • 30. Hermans EJ, Hendler T, Kalisch R. Building Resilience: The Stress Response as a Driving Force for Neuroplasticity and Adaptation. Biological Psychiatry. 2025;97(4):330-8.
  • 31. Hinson HE, Rowell S, Schreiber M. Clinical evidence of inf-lammation driving secondary brain injury. Journal of Trauma and Acute Care Surgery. 2015;78(1):184-91.

Masif Travmanın Beyin Yapıları Üzerindeki Etkisi: 6 Şubat Depremi Sonrası MR Volümetrik Analizi

Yıl 2025, Cilt: 22 Sayı: 1, 165 - 171, 26.03.2025
https://doi.org/10.35440/hutfd.1635291

Öz

Amaç: Bu çalışma, 6 Şubat depremi sonrası beyin yapıları üzerindeki etkileri, özellikle duygu durumla ilişkili merkezleri Manyetik Rezonans Görüntüleme (MRG) volümetrik analizi kullanarak incelemeyi amaçlamakta-dır.
Materyal ve Metod: Bu retrospektif çalışma, nöroloji kliniğinde takip edilen ve beyin MRG’i hem deprem öncesinde hem de sonrasında çekilmiş 20 hastayı (2022-2023) içermektedir. MRG taramaları, felaketten önceki ve sonraki bir yıl içinde analiz edilmiştir. Çalışmaya dahil edilen hastaların yaşı, cinsiyeti, MRG endi-kasyonları ve tıbbi öyküsü kaydedilmiştir. Dahil edilme kriterleri baş ağrısı öyküsü bulunan bireyleri kapsar-ken, nörodejeneratif hastalıkları, kafa travması veya diğer yapısal beyin patolojileri olan hastalar çalışmadan dışlanmıştır. Beyin hacminin volümetrik analizi için volBrain yöntemi kullanılmıştır. 3T MRG T1-ağırlıklı sekanslar ile toplam beyin hacmi, beyaz madde, gri madde, beyin omurilik sıvısı (BOS) ve limbik sistem (hipokampus, parahipokampal girus, amigdala, hipotalamus, singulat girus, entorinal korteks), prefrontal korteks, beyincik ve talamus gibi belirli beyin bölgeleri değerlendirilmiştir. Çalışmaya katılan tüm hastalar deprem nedeniyle birinci derece yakın kaybı yaşamış veya evleri yıkılmış bireylerden oluşmaktadır.
Bulgular: Çalışma grubunun %65’i kadın, %35’i erkek olup, yaş ortalaması 42,15 ± 8,41 yıldır. Deprem sonrası birçok beyin bölgesinde anlamlı volümetrik değişiklikler gözlemlenmiştir. Beyaz madde hacmi belir-gin şekilde azalırken (p=0,011), BOS hacmi artmıştır (p=0,017). Toplam beyin hacminde anlamlı bir azalma saptanmıştır (p=0,025). Beyincik toplam hacmi (p=0,023) ile sağ (p=0,021) ve sol hemisferleri (p=0,029) anlamlı küçülme göstermiştir. Benzer şekilde, talamus toplam hacmi (p=0,008), sağ (p=0,009) ve sol hemis-ferleri (p=0,010) anlamlı olarak azalmıştır. Buna karşın, posterior singulat girus (PCgG) toplam (p=0,007), sağ (p=0,023) ve sol (p=0,012) hemisferlerinde belirgin hacim artışı göstermiştir.
Sonuç: Elde edilen bulgular, akut stres veya travmanın nörobiyolojik etkilerini yansıtan belirgin beyin hacmi değişikliklerine işaret etmektedir. Bu değişimler, deprem gibi travmatik olayların uzun vadeli etkilerini anlamak ve bu etkileri azaltmaya yönelik müdahaleler geliştirmek için ileri çalışmalara duyulan ihtiyacı ortaya koymaktadır.

Anahtar Kelimeler: Deprem kaynaklı travma, MRG volümetrik analiz, Limbik sistem, Deprem, Nörogörüntü-leme

Etik Beyan

ETİK KRUL ONAYI ALINMIŞTIR

Destekleyen Kurum

HATAY MUSTAFA KEMAL ÜNİVERSİTESİ

Proje Numarası

2024.07.09/10

Kaynakça

  • 1. Theodoratou M, Kougioumtzis GA, Yotsidi V, Sofologi M, Katsarou D, Megari K. Neuropsychological Consequences of Massive Trauma: Implications and Clinical Interventions. Me-dicina. 2023;59(12).
  • 2. Efendi F, Indarwati R, Aurizki GE, Susanti IA, Fajar Maulana AE. Policymakers’ Perspectives on Responding to the Elderly's Mental Health Needs in Post-Disaster Situations. Journal of Public Health Research. 2022;11(1).
  • 3. Alghamdi AA. The Psychological Challenges of Emergency Medical Service Providers During Disasters: A Mini-Review February 2022. Frontiers in Psychiatry. 2022;13.
  • 4. Cofini V, Carbonelli A, Cecilia MR, Binkin N, di Orio F. Post traumatic stress disorder and coping in a sample of adult survivors of the Italian earthquake. Psychiatry Research. 2015;229(1-2):353-8.
  • 5. Carmassi C, Dell'Oste V, Bertelloni CA, et al. Disrupted Rhythmicity and Vegetative Functions Relate to PTSD and Gender in Earthquake Survivors. Frontiers in Psychiatry. 2020;11.
  • 6. Güngörmüş Z, Özgüç S. Psychosocial problems observed in older adults after disaster. Psychogeriatrics. 2025;25(2):e70001..
  • 7. Heanoy EZ, Brown NR. Impact of Natural Disasters on Mental Health: Evidence and Implications. Healthcare. 2024;12(18).
  • 8. Akiki TJ, Abdallah CG. Mapping the Depressed Brain Under Stress Using Multimodal Neuroimaging. American Journal of Psychiatry. 2024;181(7):578-80.
  • 9. Lui S, Huang X, Chen L, et al. High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. Proceedings of the National Academy of Sciences. 2009;106(36):15412-7.
  • 10. Ringwald KG, Pfarr JK, Stein F, et al. Association between stressful life events and grey matter volume in the medial prefrontal cortex: A 2‐year longitudinal study. Human Brain Mapping. 2022;43(11):3577-84.
  • 11. Lemke H, Probst S, Warneke A, et al. The Course of Disease in Major Depressive Disorder Is Associated With Altered Ac-tivity of the Limbic System During Negative Emotion Proces-sing. Biological Psychiatry: Cognitive Neuroscience and Neu-roimaging. 2022;7(3):323-32.
  • 12. Manjón JV, Coupé P. volBrain: An Online MRI Brain Volu-metry System. Frontiers in Neuroinformatics. 2016;10.
  • 13. Manjón JV, Romero JE, Vivo-Hernando R, et al. vol2Brain: A New Online Pipeline for Whole Brain MRI Analysis. Frontiers in Neuroinformatics. 2022;16.
  • 14. Abraham M, Mundorf A, Brodmann K, Freund N. Unraveling the mystery of white matter in depression: A translational perspective on recent advances. Brain and Behavior. 2022;12(7):e2629.
  • 15. Meng L, Shan T, Li K, Gong Q. Long-term tract-specific white matter microstructural changes after acute stress. Brain Ima-ging and Behavior. 2020;15(4):1868-75.
  • 16. McEwen Bruce S, Morrison John H. The Brain on Stress: Vulnerability and Plasticity of the Prefrontal Cortex over the Life Course. Neuron. 2013;79(1):16-29.
  • 17. Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin Iii EF, Liotta LA. CSF proteome: a protein repository for poten-tial biomarker identification. Expert Review of Proteomics. 2014;2(1):57-70.
  • 18. Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventri-culomegaly and hydrocephalus. Fluids and Barriers of the CNS. 2024;21(1).
  • 19. Batail JM, Coloigner J, Soulas M, Robert G, Barillot C, Drapier D. Structural abnormalities associated with poor outcome of a major depressive episode: The role of thalamus. Psychiatry Research: Neuroimaging. 2020;305111158.
  • 20. Hong W, Li M, Liu Z, et al. Heterogeneous alterations in thalamic subfields in major depression disorder. Journal of Affective Disorders. 2021;295:1079-86.
  • 21. Lange I, Kasanova Z, Goossens L, et al. The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neu-roscience & Biobehavioral Reviews. 2015;59:83-91.
  • 22. Blithikioti C, Duek O, Gordon C, et al. Cerebellar Contributi-ons to Traumatic Autobiographical Memory in People with Post-Traumatic Stress Disorder. The Cerebellum. 2024;23(6):2332-40.
  • 23. Pitman RK, Rasmusson AM, Koenen KC, et al. Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience. 2012;13(11):769-87.
  • 24. Zhang L, Li W, Shu N, et al. Increased white matter integrity of posterior cingulate gyrus in the evolution of post-traumatic stress disorder. Acta Neuropsychiatrica. 2014;24(1):34-42.
  • 25. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(1):12-32.
  • 26. Anderson MC, Floresco SB. Prefrontal-hippocampal interacti-ons supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology. 2021;47(1):180-95.
  • 27. Afridi R, Suk K. Microglial Responses to Stress-Induced Dep-ression: Causes and Consequences. Cells. 2023;12(11).
  • 28. Burtscher J, Niedermeier M, Hüfner K, et al. The interplay of hypoxic and mental stress: Implications for anxiety and dep-ressive disorders. Neuroscience & Biobehavioral Reviews. 2022;138.
  • 29. Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. The Stressed CNS: When Glucocorticoids Aggravate Inflammation. Neuron. 2009;64(1):33-9.
  • 30. Hermans EJ, Hendler T, Kalisch R. Building Resilience: The Stress Response as a Driving Force for Neuroplasticity and Adaptation. Biological Psychiatry. 2025;97(4):330-8.
  • 31. Hinson HE, Rowell S, Schreiber M. Clinical evidence of inf-lammation driving secondary brain injury. Journal of Trauma and Acute Care Surgery. 2015;78(1):184-91.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nöroloji ve Nöromüsküler Hastalıklar
Bölüm Araştırma Makalesi
Yazarlar

Derya Yavuz Demiray 0000-0003-2683-3062

Fatma Öz 0000-0002-7450-723X

Ozan Harbali 0009-0003-5504-6794

Hanifi Bayaroğulları 0000-0001-6147-5876

Proje Numarası 2024.07.09/10
Erken Görünüm Tarihi 18 Mart 2025
Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 7 Şubat 2025
Kabul Tarihi 1 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 1

Kaynak Göster

Vancouver Yavuz Demiray D, Öz F, Harbali O, Bayaroğulları H. Impact of Massive Trauma on Brain Structures: MRI Volumetric Analysis Post-February 6 Earthquake. Harran Üniversitesi Tıp Fakültesi Dergisi. 2025;22(1):165-71.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty