Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 4 Sayı: 1, 41 - 47, 15.04.2020
https://doi.org/10.35860/iarej.672356

Öz

Kaynakça

  • 1. Yilmaz, C., Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings. Geothermics, 2017. 70: p. 239-248.
  • 2. Shahin, M. S., M. F. Orhan and F. Uygul, Thermodynamic analysis of parabolic trough and heliostat field solar collectors integrated with a Rankine cycle for cogeneration of electricity and heat. Solar Energy, 2016. 136: p. 183-196.
  • 3. Li, Y. and Y. Yang, Thermodynamic analysis of a novel integrated solar combined cycle. Applied energy, 2014. 122: p. 133-142.
  • 4. Zhou, C., E. Doroodchi and B. Moghtaderi, An in-depth assessment of hybrid solar–geothermal power generation. Energy Conversion and Management, 2013. 74: p. 88-101.
  • 5. Ezzat, M. F., I. Dıncer, Energy and exergy analyses of a new geothermal–solar energy based system. Solar Energy, 2016. 134: p. 95-106.
  • 6. Astolfi, M., L. Xodo, M. C. Romano and E. Macchi, Technical and economical analysis of a solar–geothermal hybrid plant based on an organic rankine cycle. Geothermics, 2011. 40(1): p. 58-68.
  • 7. Kanoglu, M., C. Yilmaz and A. Abusoglu, Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle. International Journal of Hydrogen Energy, 2016. 41(26): p. 11185-11200.
  • 8. Yakut, A. K., A. Şencan, R. Selbaş, E. Dikmen, B. Görgülü, İ. Dostuçok and S. Kutlu, Güneş enerjisi destekli absorbsiyonlu soğutma sisteminin termodinamik incelenmesi. Soğutma Dünyası, 2013. 16(60): p. 76-81.
  • 9. Kuyumcu, M. E., H. E. Şahin, R. Yumrutaş and M. İmal, Kahramanmaraş kentinde güneş enerjisi destekli absorpsiyonlu soğutma sistemi kullanılarak bir apartman dairesinin soğutulması. Kahramanmaras SutcuImam University Journal of Engineering Sciences, 2015. 18(2): p. 25-32.
  • 10. Bilgiç, H. H., H. Yağlı, A. Koç, and, A. Yapıcı, Deneysel bir organik rankine çevriminde yapay sinir ağları (ysa) yardımıyla güç tahmini. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 2016. 4(1): p. 7-17.
  • 11. Yağlı, H., Y. Koç, A. Koç, A. Görgülü and A. Tandiroğlu, Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat. Energy, 2016. 111: p. 923-932.
  • 12. Eisavi, B., S. Khalilarya, A. Chitsaz and M. A. Rosen, Thermodynamic analysis of a novel combined cooling, heating and power system driven by solar energy. Applied Thermal Engineering, 2018.129: p. 1219-1229.
  • 13. Yılmaz, F., Thermodynamic performance evaluation of a novel solar energy based multigeneration system. Applied Thermal Engineering, 2018. 143: p. 429-437.
  • 14. Zhao, L., Y. Zhang, S. Deng, J. Ni, W. Xu, M. Ma and Z. Yu, Solar driven ORC-based CCHP: Comparative performance analysis between sequential and parallel system configurations. Applied Thermal Engineering, 2018. 131: p. 696-706.
  • 15. Cengel, Y. and A. J. Ghajar, Heat And Mass Transfer : Fundamentals And Application. 5th edition, McGraw-Hill Science, 2014.
  • 16. Cengel, Y. and M. A. Boles, Thermodynamics: An Engineering Approach, 8th edition, McGraw-Hill Science, 2015.
  • 17. Meteoroloji Genel Müdürlüğü, Available from: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx
  • 18. Yigit, A. and I.Atmaca, Güneş Enerjisi Mühendislik Uygulamaları. 1st edition, Dora Yayınları, 2018.

Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system

Yıl 2020, Cilt: 4 Sayı: 1, 41 - 47, 15.04.2020
https://doi.org/10.35860/iarej.672356

Öz

In this study, geothermal and solar assisted cogeneration system is modeled to the supply of electricity and cooling. The energy requirements of Afyon Kocatepe University, Faculty of Technology building, are investigated. The building cooling system is performed by using heat energy provided from geothermal and solar energy in an absorption cooling system. Subsequently, it is aimed to generate electricity in the Organic Rankine Cycle (ORC) with geothermal water and waste heat leaving the cycle. It is planned that the electricity produced in the power cycle is supplied to the grid system according to the requirement. The cooling load of the faculty building is calculated by considering the working conditions of the faculty building. The ideal thermodynamic analysis and performance evaluation of the system has been performed by using Engineering Equation Solver (EES) software into consideration by considering the cooling season, geothermal and solar energy data of Afyon in the summer season. The parametric study of the system is performed by considering different geothermal water temperature and solar radiation. The reversible COP of the absorption cooling system is calculated to be 3.18. The maximum heat energy value obtained from solar energy is calculated to be 74.97 kW in June. The highest ideal cooling capacity and maximum power provided from geothermal and solar assisted cogeneration energy systems are calculated to be 40,222 kW and 4688 kW, respectively, in June. These results are sufficient to supply the electrical and cooling requirements of the faculty building.

Kaynakça

  • 1. Yilmaz, C., Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings. Geothermics, 2017. 70: p. 239-248.
  • 2. Shahin, M. S., M. F. Orhan and F. Uygul, Thermodynamic analysis of parabolic trough and heliostat field solar collectors integrated with a Rankine cycle for cogeneration of electricity and heat. Solar Energy, 2016. 136: p. 183-196.
  • 3. Li, Y. and Y. Yang, Thermodynamic analysis of a novel integrated solar combined cycle. Applied energy, 2014. 122: p. 133-142.
  • 4. Zhou, C., E. Doroodchi and B. Moghtaderi, An in-depth assessment of hybrid solar–geothermal power generation. Energy Conversion and Management, 2013. 74: p. 88-101.
  • 5. Ezzat, M. F., I. Dıncer, Energy and exergy analyses of a new geothermal–solar energy based system. Solar Energy, 2016. 134: p. 95-106.
  • 6. Astolfi, M., L. Xodo, M. C. Romano and E. Macchi, Technical and economical analysis of a solar–geothermal hybrid plant based on an organic rankine cycle. Geothermics, 2011. 40(1): p. 58-68.
  • 7. Kanoglu, M., C. Yilmaz and A. Abusoglu, Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle. International Journal of Hydrogen Energy, 2016. 41(26): p. 11185-11200.
  • 8. Yakut, A. K., A. Şencan, R. Selbaş, E. Dikmen, B. Görgülü, İ. Dostuçok and S. Kutlu, Güneş enerjisi destekli absorbsiyonlu soğutma sisteminin termodinamik incelenmesi. Soğutma Dünyası, 2013. 16(60): p. 76-81.
  • 9. Kuyumcu, M. E., H. E. Şahin, R. Yumrutaş and M. İmal, Kahramanmaraş kentinde güneş enerjisi destekli absorpsiyonlu soğutma sistemi kullanılarak bir apartman dairesinin soğutulması. Kahramanmaras SutcuImam University Journal of Engineering Sciences, 2015. 18(2): p. 25-32.
  • 10. Bilgiç, H. H., H. Yağlı, A. Koç, and, A. Yapıcı, Deneysel bir organik rankine çevriminde yapay sinir ağları (ysa) yardımıyla güç tahmini. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 2016. 4(1): p. 7-17.
  • 11. Yağlı, H., Y. Koç, A. Koç, A. Görgülü and A. Tandiroğlu, Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat. Energy, 2016. 111: p. 923-932.
  • 12. Eisavi, B., S. Khalilarya, A. Chitsaz and M. A. Rosen, Thermodynamic analysis of a novel combined cooling, heating and power system driven by solar energy. Applied Thermal Engineering, 2018.129: p. 1219-1229.
  • 13. Yılmaz, F., Thermodynamic performance evaluation of a novel solar energy based multigeneration system. Applied Thermal Engineering, 2018. 143: p. 429-437.
  • 14. Zhao, L., Y. Zhang, S. Deng, J. Ni, W. Xu, M. Ma and Z. Yu, Solar driven ORC-based CCHP: Comparative performance analysis between sequential and parallel system configurations. Applied Thermal Engineering, 2018. 131: p. 696-706.
  • 15. Cengel, Y. and A. J. Ghajar, Heat And Mass Transfer : Fundamentals And Application. 5th edition, McGraw-Hill Science, 2014.
  • 16. Cengel, Y. and M. A. Boles, Thermodynamics: An Engineering Approach, 8th edition, McGraw-Hill Science, 2015.
  • 17. Meteoroloji Genel Müdürlüğü, Available from: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx
  • 18. Yigit, A. and I.Atmaca, Güneş Enerjisi Mühendislik Uygulamaları. 1st edition, Dora Yayınları, 2018.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Ozan Sen 0000-0002-9913-664X

Ceyhun Yılmaz 0000-0002-8827-692X

Yayımlanma Tarihi 15 Nisan 2020
Gönderilme Tarihi 8 Ocak 2020
Kabul Tarihi 9 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 1

Kaynak Göster

APA Sen, O., & Yılmaz, C. (2020). Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system. International Advanced Researches and Engineering Journal, 4(1), 41-47. https://doi.org/10.35860/iarej.672356
AMA Sen O, Yılmaz C. Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system. Int. Adv. Res. Eng. J. Nisan 2020;4(1):41-47. doi:10.35860/iarej.672356
Chicago Sen, Ozan, ve Ceyhun Yılmaz. “Thermodynamic Performance Analysis of Geothermal and Solar Energy Assisted Power Generation and Residential Cooling System”. International Advanced Researches and Engineering Journal 4, sy. 1 (Nisan 2020): 41-47. https://doi.org/10.35860/iarej.672356.
EndNote Sen O, Yılmaz C (01 Nisan 2020) Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system. International Advanced Researches and Engineering Journal 4 1 41–47.
IEEE O. Sen ve C. Yılmaz, “Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system”, Int. Adv. Res. Eng. J., c. 4, sy. 1, ss. 41–47, 2020, doi: 10.35860/iarej.672356.
ISNAD Sen, Ozan - Yılmaz, Ceyhun. “Thermodynamic Performance Analysis of Geothermal and Solar Energy Assisted Power Generation and Residential Cooling System”. International Advanced Researches and Engineering Journal 4/1 (Nisan 2020), 41-47. https://doi.org/10.35860/iarej.672356.
JAMA Sen O, Yılmaz C. Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system. Int. Adv. Res. Eng. J. 2020;4:41–47.
MLA Sen, Ozan ve Ceyhun Yılmaz. “Thermodynamic Performance Analysis of Geothermal and Solar Energy Assisted Power Generation and Residential Cooling System”. International Advanced Researches and Engineering Journal, c. 4, sy. 1, 2020, ss. 41-47, doi:10.35860/iarej.672356.
Vancouver Sen O, Yılmaz C. Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system. Int. Adv. Res. Eng. J. 2020;4(1):41-7.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.