Research Article
BibTex RIS Cite

Thermomechanical vibration response of nickel foam nanoplates

Year 2024, Volume: 8 Issue: 3, 175 - 186, 20.12.2024
https://doi.org/10.35860/iarej.1537234

Abstract

This article studies the buckling properties of nickel foam nanoplate. This research used nonlocal strain gradient elasticity and the new theory of sinusoidal higher-order deformation. After deriving the nanoplate's equations of motion from Hamilton's principle, the Navier technique was used to solve them. Two different kinds of foam models, uniform and symmetric, can be used to depict the nanoplate. Examining the nanoplate's dimensionless fundamental natural frequencies was the study's primary goal. The effects of temperature difference, nonlocal parameters, foam void ratio, and two different kinds of foam were considered in this investigation. In this context, the nanoplate's natural frequency decreases by 23.78% in the symmetric foam model and 51.5% in the uniform foam model as the foam void ratio increases. The research provides valuable insights for the development of nanoelectromechanical systems (NEMS), nanosensors, and transducers intended for high-temperature environments. By analyzing the impact of temperature and foam void ratio on nanoplate stability, the study informs material selection and structural design for applications where performance under thermal stress is critical, such as in aerospace and energy sectors.

References

  • 1. Ghorbanpour-Arani, A.H., Rastgoo, A., Sharafi, M.M., Kolahchi, R., and Ghorbanpour Arani, A., Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems. Meccanica, 2016. 51(1): p. 25–40.
  • 2. Ghorbanpour-Arani, A.H., Rastgoo, A., Hafizi Bidgoli, A., Kolahchi, R., and Ghorbanpour Arani, A., Wave propagation of coupled double-DWBNNTs conveying fluid-systems using different nonlocal surface piezoelasticity theories. Mechanics of Advanced Materials and Structures, 2017. 24(14): p. 1159–1179.
  • 3. Ghorbanpour Arani, A., Miralaei, N., Farazin, A., and Mohammadimehr, M., An extensive review of the repair behavior of smart self-healing polymer matrix composites. Journal of Materials Research, 2023. 38(3): p. 617–632.
  • 4. Ghorbanpour Arani, A., Haghparast, E., and Ghorbanpour Arani, A.H., Size‐dependent vibration of double‐bonded carbon nanotube‐reinforced composite microtubes conveying fluid under longitudinal magnetic field. Polymer Composites, 2014. 37(5): p. 1375–1383.
  • 5. Meng, M., Yuan, Y., Liu, J.G., Geng, C., and Xu, S., Phosphor-Converted LEDs Based on CdSe/CdS Quantum Rod–BN Nanoplate Assembly. ACS Applied Nano Materials, 2024. 7(12): p. 14719–14726.
  • 6. Lin, Y., Qin, C., Fang, L., Wang, J., and Li, D., Colored Polymeric Films with a Bilayer Porous Design for Efficient Subambient Radiative Cooling. ACS Applied Polymer Materials, 2024. 6(1): p. 722–731.
  • 7. Zhao, X., Tang, Y., Wang, J., Li, Y., Li, D., Zuo, X., and Yang, H., Visible Light Locking in Mineral-Based Composite Phase Change Materials Enabling High Photothermal Conversion and Storage. ACS Applied Materials & Interfaces, 2023. 15(42): p. 49132–49145.
  • 8. Kohashi, K., Okano, Y., Tanisawa, D., Kaneko, K., Miyake, S., and Takashiri, M., Surface Modification of Bi2Te3 Nanoplates Deposited with Tin, Palladium, and Tin/Palladium Using Electroless Deposition. Crystals, 2024. 14(2): p. 132.
  • 9. Son, J.S., Choi, M.K., Han, M.-K., Park, K., Kim, J.-Y., Lim, S.J., Oh, M., Kuk, Y., Park, C., Kim, S.-J., and Hyeon, T., n-Type Nanostructured Thermoelectric Materials Prepared from Chemically Synthesized Ultrathin Bi2Te3 Nanoplates. Nano Letters, 2012. 12(2): p. 640–647.
  • 10. Zhu, H., and Fan, L., Nanofluids effect on the overall transfer coefficients change mechanism analysis. Energy Science & Engineering, 2023. 11(2): p. 4481–4492.
  • 11. Zolfalizadeh, M., Zeinali Heris, S., Pourpasha, H., Mohammadpourfard, M., and Meyer, J.P., Experimental Investigation of the Effect of Graphene/Water Nanofluid on the Heat Transfer of a Shell-and-Tube Heat Exchanger. International Journal of Energy Research, 2023. 2023(1): p. 1–16.
  • 12. Carrillo-Berdugo, I., Midgley, S.D., Grau-Crespo, R., Zorrilla, D., and Navas, J., Understanding the Specific Heat Enhancement in Metal-Containing Nanofluids for Thermal Energy Storage: Experimental and Ab Initio Evidence for a Strong Interfacial Layering Effect. ACS Applied Energy Materials, 2020. 3(9): p. 9246–9256.
  • 13. Al-Waily, M., Raad, H., and Njim, E.K., Free Vibration Analysis of Sandwich Plate-Reinforced Foam Core Adopting Micro Aluminum Powder. Physics and Chemistry of Solid State, 2022. 23(4): p. 659–668.
  • 14. Wang, Y., and Zhang, Z., Non-Local Buckling Analysis of Functionally Graded Nanoporous Metal Foam Nanoplates. Coatings, 2018. 8(11): p.389.
  • 15. Eroğlu, M., Esen, İ., and Koç, M.A., Thermal vibration and buckling analysis of magneto-electro-elastic functionally graded porous higher-order nanobeams using nonlocal strain gradient theory. Acta Mechanica, 2024. 235(2): p. 1175–1211.
  • 16. Zhao, N., Ye, R., Tian, A., Cui, J., Ren, P., and Wang, M., Experimental and Numerical Investigation on the Anti-Penetration Performance of Metallic Sandwich Plates for Marine Applications. Journal of Sandwich Structures & Materials, 2019. 22(2): p.494-522.
  • 17. Sun, C., Albustani, H., Phadnis, V.A., Nasr, M., Cantwell, W.J., and Guan, Z., Improving the structural integrity of foam-core sandwich composites using continuous carbon fiber stitching. Composite Structures, 2023. 324: p., 117509.
  • 18. Mocian, O., Constantinescu, D.M., and Indreş, A., Assessment on Energy Absorption of Foam Core Sandwich Panels Under Low Velocity Impact. Macromolecular Symposia, 2021. 396(1).
  • 19. Ozer, S., Haciyusufoglu, F., and Vural, E., Experimental investigation of the effect of the use of nanoparticle additional biodiesel on fuel consumption and exhaust emissions in tractor using a coated engine. Thermal Science, 2023. 27(4): p. 3189–3197.
  • 20. Vural, E., Özer, S., Özel, S., and Binici, M., Analyzing the effects of hexane and water blended diesel fuels on emissions and performance in a ceramic-coated diesel engine by Taguchi optimization method. Fuel, 2023. 344: p. 128105.
  • 21. Chen, D., Yang, J., and Kitipornchai, S., Elastic buckling and static bending of shear deformable functionally graded porous beam. Composite Structures, 2015. 133: p. 54–61.
  • 22. Yang, J., Chen, D., and Kitipornchai, S., Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures, 2018. 193: p. 281–294.
  • 23. Wang, Y.Q., and Zhao, H.L., Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Archive of Applied Mechanics, 2019. 89(11): p. 2335–2349.
  • 24. Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R., and Mukhopadhyay, T., Vibration and Buckling Analyses of Sandwich Plates Containing Functionally Graded Metal Foam Core. Acta Mechanica Solida Sinica, 2022. 35(4): p. 1–16.
  • 25. Touloukian, Y.S., Thermophysical properties of high temperature solid materials. Macmillan, 1967.
  • 26. Kiani, Y., and Eslami, M.R., An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composite Part B: Engineering, 2013. 45(1): p.101–110.
  • 27. Zhang, D.G., Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica, 2014. 49(2): p.283–293.
  • 28. Eringen, A.C., Theories of nonlocal plasticity. International Journal of Engineering Science, 1983. 21(7): p.741–751.
  • 29. Lim, C.W., Zhang, G., and Reddy, J.N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 2015. 78: p.298–313.
  • 30. Farajpour, A., and Rastgoo, A., Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory. Results in Physics, 2017. 7: p.1367–1375.
  • 31. Eringen, A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 1983. 54(9): p.4703–4710.
  • 32. Li, L., Li, X., and Hu, Y., Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 2016. 102: p.77–92.
  • 33. Żur, K.K., Arefi, M., Kim, J., and Reddy, J.N., Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Composite Part B: Engineering, 2020. 182.
  • 34. Aghababaei, R., and Reddy, J.N., Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. Journal of Sound and Vibration, 2009. 326(1–2): p.277–289.
  • 35. Monaco, G.T., Fantuzzi, N., Fabbrocino, F., and Luciano, R., Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates. Nanomaterials, 2021. 11(1): p.1–18.
  • 36. Ramirez, F., Heyliger, P.R., and Pan, E., Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mechanics of Advanced Materials and Structures, 2006. 13(3): p.249–266.
Year 2024, Volume: 8 Issue: 3, 175 - 186, 20.12.2024
https://doi.org/10.35860/iarej.1537234

Abstract

References

  • 1. Ghorbanpour-Arani, A.H., Rastgoo, A., Sharafi, M.M., Kolahchi, R., and Ghorbanpour Arani, A., Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems. Meccanica, 2016. 51(1): p. 25–40.
  • 2. Ghorbanpour-Arani, A.H., Rastgoo, A., Hafizi Bidgoli, A., Kolahchi, R., and Ghorbanpour Arani, A., Wave propagation of coupled double-DWBNNTs conveying fluid-systems using different nonlocal surface piezoelasticity theories. Mechanics of Advanced Materials and Structures, 2017. 24(14): p. 1159–1179.
  • 3. Ghorbanpour Arani, A., Miralaei, N., Farazin, A., and Mohammadimehr, M., An extensive review of the repair behavior of smart self-healing polymer matrix composites. Journal of Materials Research, 2023. 38(3): p. 617–632.
  • 4. Ghorbanpour Arani, A., Haghparast, E., and Ghorbanpour Arani, A.H., Size‐dependent vibration of double‐bonded carbon nanotube‐reinforced composite microtubes conveying fluid under longitudinal magnetic field. Polymer Composites, 2014. 37(5): p. 1375–1383.
  • 5. Meng, M., Yuan, Y., Liu, J.G., Geng, C., and Xu, S., Phosphor-Converted LEDs Based on CdSe/CdS Quantum Rod–BN Nanoplate Assembly. ACS Applied Nano Materials, 2024. 7(12): p. 14719–14726.
  • 6. Lin, Y., Qin, C., Fang, L., Wang, J., and Li, D., Colored Polymeric Films with a Bilayer Porous Design for Efficient Subambient Radiative Cooling. ACS Applied Polymer Materials, 2024. 6(1): p. 722–731.
  • 7. Zhao, X., Tang, Y., Wang, J., Li, Y., Li, D., Zuo, X., and Yang, H., Visible Light Locking in Mineral-Based Composite Phase Change Materials Enabling High Photothermal Conversion and Storage. ACS Applied Materials & Interfaces, 2023. 15(42): p. 49132–49145.
  • 8. Kohashi, K., Okano, Y., Tanisawa, D., Kaneko, K., Miyake, S., and Takashiri, M., Surface Modification of Bi2Te3 Nanoplates Deposited with Tin, Palladium, and Tin/Palladium Using Electroless Deposition. Crystals, 2024. 14(2): p. 132.
  • 9. Son, J.S., Choi, M.K., Han, M.-K., Park, K., Kim, J.-Y., Lim, S.J., Oh, M., Kuk, Y., Park, C., Kim, S.-J., and Hyeon, T., n-Type Nanostructured Thermoelectric Materials Prepared from Chemically Synthesized Ultrathin Bi2Te3 Nanoplates. Nano Letters, 2012. 12(2): p. 640–647.
  • 10. Zhu, H., and Fan, L., Nanofluids effect on the overall transfer coefficients change mechanism analysis. Energy Science & Engineering, 2023. 11(2): p. 4481–4492.
  • 11. Zolfalizadeh, M., Zeinali Heris, S., Pourpasha, H., Mohammadpourfard, M., and Meyer, J.P., Experimental Investigation of the Effect of Graphene/Water Nanofluid on the Heat Transfer of a Shell-and-Tube Heat Exchanger. International Journal of Energy Research, 2023. 2023(1): p. 1–16.
  • 12. Carrillo-Berdugo, I., Midgley, S.D., Grau-Crespo, R., Zorrilla, D., and Navas, J., Understanding the Specific Heat Enhancement in Metal-Containing Nanofluids for Thermal Energy Storage: Experimental and Ab Initio Evidence for a Strong Interfacial Layering Effect. ACS Applied Energy Materials, 2020. 3(9): p. 9246–9256.
  • 13. Al-Waily, M., Raad, H., and Njim, E.K., Free Vibration Analysis of Sandwich Plate-Reinforced Foam Core Adopting Micro Aluminum Powder. Physics and Chemistry of Solid State, 2022. 23(4): p. 659–668.
  • 14. Wang, Y., and Zhang, Z., Non-Local Buckling Analysis of Functionally Graded Nanoporous Metal Foam Nanoplates. Coatings, 2018. 8(11): p.389.
  • 15. Eroğlu, M., Esen, İ., and Koç, M.A., Thermal vibration and buckling analysis of magneto-electro-elastic functionally graded porous higher-order nanobeams using nonlocal strain gradient theory. Acta Mechanica, 2024. 235(2): p. 1175–1211.
  • 16. Zhao, N., Ye, R., Tian, A., Cui, J., Ren, P., and Wang, M., Experimental and Numerical Investigation on the Anti-Penetration Performance of Metallic Sandwich Plates for Marine Applications. Journal of Sandwich Structures & Materials, 2019. 22(2): p.494-522.
  • 17. Sun, C., Albustani, H., Phadnis, V.A., Nasr, M., Cantwell, W.J., and Guan, Z., Improving the structural integrity of foam-core sandwich composites using continuous carbon fiber stitching. Composite Structures, 2023. 324: p., 117509.
  • 18. Mocian, O., Constantinescu, D.M., and Indreş, A., Assessment on Energy Absorption of Foam Core Sandwich Panels Under Low Velocity Impact. Macromolecular Symposia, 2021. 396(1).
  • 19. Ozer, S., Haciyusufoglu, F., and Vural, E., Experimental investigation of the effect of the use of nanoparticle additional biodiesel on fuel consumption and exhaust emissions in tractor using a coated engine. Thermal Science, 2023. 27(4): p. 3189–3197.
  • 20. Vural, E., Özer, S., Özel, S., and Binici, M., Analyzing the effects of hexane and water blended diesel fuels on emissions and performance in a ceramic-coated diesel engine by Taguchi optimization method. Fuel, 2023. 344: p. 128105.
  • 21. Chen, D., Yang, J., and Kitipornchai, S., Elastic buckling and static bending of shear deformable functionally graded porous beam. Composite Structures, 2015. 133: p. 54–61.
  • 22. Yang, J., Chen, D., and Kitipornchai, S., Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures, 2018. 193: p. 281–294.
  • 23. Wang, Y.Q., and Zhao, H.L., Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Archive of Applied Mechanics, 2019. 89(11): p. 2335–2349.
  • 24. Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R., and Mukhopadhyay, T., Vibration and Buckling Analyses of Sandwich Plates Containing Functionally Graded Metal Foam Core. Acta Mechanica Solida Sinica, 2022. 35(4): p. 1–16.
  • 25. Touloukian, Y.S., Thermophysical properties of high temperature solid materials. Macmillan, 1967.
  • 26. Kiani, Y., and Eslami, M.R., An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composite Part B: Engineering, 2013. 45(1): p.101–110.
  • 27. Zhang, D.G., Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica, 2014. 49(2): p.283–293.
  • 28. Eringen, A.C., Theories of nonlocal plasticity. International Journal of Engineering Science, 1983. 21(7): p.741–751.
  • 29. Lim, C.W., Zhang, G., and Reddy, J.N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 2015. 78: p.298–313.
  • 30. Farajpour, A., and Rastgoo, A., Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory. Results in Physics, 2017. 7: p.1367–1375.
  • 31. Eringen, A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 1983. 54(9): p.4703–4710.
  • 32. Li, L., Li, X., and Hu, Y., Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 2016. 102: p.77–92.
  • 33. Żur, K.K., Arefi, M., Kim, J., and Reddy, J.N., Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Composite Part B: Engineering, 2020. 182.
  • 34. Aghababaei, R., and Reddy, J.N., Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. Journal of Sound and Vibration, 2009. 326(1–2): p.277–289.
  • 35. Monaco, G.T., Fantuzzi, N., Fabbrocino, F., and Luciano, R., Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates. Nanomaterials, 2021. 11(1): p.1–18.
  • 36. Ramirez, F., Heyliger, P.R., and Pan, E., Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mechanics of Advanced Materials and Structures, 2006. 13(3): p.249–266.
There are 36 citations in total.

Details

Primary Language English
Subjects Dynamics, Vibration and Vibration Control
Journal Section Research Articles
Authors

Mustafa Eroğlu 0000-0002-1429-7656

Publication Date December 20, 2024
Submission Date August 22, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Eroğlu, M. (2024). Thermomechanical vibration response of nickel foam nanoplates. International Advanced Researches and Engineering Journal, 8(3), 175-186. https://doi.org/10.35860/iarej.1537234
AMA Eroğlu M. Thermomechanical vibration response of nickel foam nanoplates. Int. Adv. Res. Eng. J. December 2024;8(3):175-186. doi:10.35860/iarej.1537234
Chicago Eroğlu, Mustafa. “Thermomechanical Vibration Response of Nickel Foam Nanoplates”. International Advanced Researches and Engineering Journal 8, no. 3 (December 2024): 175-86. https://doi.org/10.35860/iarej.1537234.
EndNote Eroğlu M (December 1, 2024) Thermomechanical vibration response of nickel foam nanoplates. International Advanced Researches and Engineering Journal 8 3 175–186.
IEEE M. Eroğlu, “Thermomechanical vibration response of nickel foam nanoplates”, Int. Adv. Res. Eng. J., vol. 8, no. 3, pp. 175–186, 2024, doi: 10.35860/iarej.1537234.
ISNAD Eroğlu, Mustafa. “Thermomechanical Vibration Response of Nickel Foam Nanoplates”. International Advanced Researches and Engineering Journal 8/3 (December 2024), 175-186. https://doi.org/10.35860/iarej.1537234.
JAMA Eroğlu M. Thermomechanical vibration response of nickel foam nanoplates. Int. Adv. Res. Eng. J. 2024;8:175–186.
MLA Eroğlu, Mustafa. “Thermomechanical Vibration Response of Nickel Foam Nanoplates”. International Advanced Researches and Engineering Journal, vol. 8, no. 3, 2024, pp. 175-86, doi:10.35860/iarej.1537234.
Vancouver Eroğlu M. Thermomechanical vibration response of nickel foam nanoplates. Int. Adv. Res. Eng. J. 2024;8(3):175-86.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.