Araştırma Makalesi
BibTex RIS Kaynak Göster

COLD PRESSED PURE ALUMINUM POWDERS SINTERING WITH ULTRA HIGH FREQUENCY INDUCTION

Yıl 2023, , 29 - 40, 04.07.2023
https://doi.org/10.38061/idunas.1310506

Öz

Metals both have good mechanical and electrical qualities, besides, they are also created as light as possible by using recent manufacturing techniques. In that scope, this study aims to use an ultra-high frequency sintering technique to sinter aluminum powders of 15 µm in size. A mold and 30 bar pressure were used to compress the powders before sintering. For the sintering temperature optimization, 3 experiments were conducted in the induction system at 600°C, 650°C, and 700°C temperatures. Sintering conditions were determined at different time intervals of 3 minutes, 5 minutes, and 10 minutes to find an optimum value for sintering time. Finally, furnace sintering was used for 1 hour at these temperatures. With 2 different sintering, 3 different temperatures, and 3 different time parameters, size, density, porosity, and hardness values were obtained. Obtained results were compared among themselves.

Kaynakça

  • 1. Gökçe, A., Fındık, F., & Kurt, A. O. (2017). Alüminyum ve alaşımlarının toz metalurjisi işlemleri. Mühendis ve Makina, 58(686), 21-47.
  • 2. Halil, A. R. I. K., Kırmızı, G., & Semerci, P. (2017). Sıcak presleme ile alüminyum matrisli ve al2o3 takviyeli toz metal kompozit malzeme üretimi ve abrasif aşınma davranışının araştırılması. Gazi University Journal of Science Part C: Design and Technology, 5(4), 87-97.
  • 3. Kumar, N., Bharti, A., & Saxena, K. K. (2021). A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites. Materials Today: Proceedings, 44, 2188-2193. 4. Pickens, J. R. (1981). Aluminium powder metallurgy technology for high-strength applications. Journal of Materials Science, 16, 1437-1457. 5. Nassar, A. E., & Nassar, E. E. (2017). Properties of aluminum matrix Nano composites prepared by powder metallurgy processing. Journal of King Saud University-Engineering Sciences, 29(3), 295-299.
  • 6. Anderson, I. E., & Foley, J. C. (2001). Determining the role of surfaces and interfaces in the powder metallurgy processing of aluminum alloy powders. Surface and Interface Analysis, 31(7), 599-608.
  • 7. Awotunde, M. A., Adegbenjo, A. O., Shongwe, M. B., & Olubambi, P. A. (2019). Spark Plasma Sintering of Aluminium-Based Materials. In Spark Plasma Sintering of Materials, Spring eBooks, 191–218. https://doi.org/10.1007/978-3-030-05327-7_7
  • 8. Hsieh, C. T., Ho, Y. C., Wang, H., Sugiyama, S., & Yanagimoto, J. (2020). Mechanical and tribological characterization of nanostructured graphene sheets/A6061 composites fabricated by induction sintering and hot extrusion. Materials Science and Engineering: A, 786, 138998.
  • 9. Seikh, A. H., Baig, M., Singh, J. K., Mohammed, J. A., Luqman, M., Abdo, H. S., ... & Alharthi, N. H. (2019). Microstructural and corrosion characteristics of Al-Fe alloys produced by high-frequency induction-sintering process. Coatings, 9(10), 686.
  • 10. Mendoza, J. M., Estrada-Guel, I., Garay, C., Romero, M. I., Perez-Bustamante, R., Carreño-Gallardo, C., & Martínez-Sánchez, R. Impact of process conditions on the mechanical properties, structure and microstructure of milled aluminum sintered through rapid induction heating. SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4273156
  • 11. Ujah, C. O., & Kallon, D. V. V. (2022). Trends in aluminium matrix composite development. Crystals, 12(10), 1357.
  • 12. Dudina, D. V., Georgarakis, K., & Olevsky, E. A. (2023). Progress in aluminium and magnesium matrix composites obtained by spark plasma, microwave and induction sintering. International Materials Reviews, 68(2), 225-246.
  • 13. Oliver, U. C., Sunday, A. V., Christain, E. I. E. I., & Elizabeth, M. M. (2021). Spark plasma sintering of aluminium composites—a review. The International Journal of Advanced Manufacturing Technology, 112, 1819-1839.
  • 14. Çavdar, U., & Sarı Çavdar, P. (2019). Demir esaslı toz metal malzemelerin ultra-yüksek frekanslı indüksiyon sistemi ile sinterleme sıcaklığı optimizasyonu, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(2009), 378-383.
  • 15. Choudhury, A., Nanda, J., & Das, S. N. (2021, November). Sintering sensitivity of aluminium metal matrix composites developed through powder metallurgy proposed technique-a review. Journal of Physics: Conference Series, 2070(1), 012193. IOP Publishing.
  • 16. Akkurt, O., Altıntaş, A., Çavdar, P., & Çavdar, U. Effect on the mechanical properties of sintering process of aluminium alloys. International Scientific and Vocational Studies Journal, 3(2), 85-91.
  • 17. Taştan, M., Gökozan, H., Çavdar, P. S., Soy, G., & Çavdar, U. (2020). Cost analysis of T6 induction heat treatment for the aluminum-copper powder metal compacts. Science of Sintering, 52(1), 77-85.
  • 18. Kohli, A., & Singh, H. (2011). Optimization of processing parameters in induction hardening using response surface methodology. Sadhana, 36(2), 141-152.
  • 19. Palaniradja, K., Alagumurthi, N., & Soundararajan, V. (2010). Modeling of phase transformation in induction hardening. The Open Materials Science Journal, 4(1), 64-73
  • 20. Çavdar, U., Taştan, M., Gökozan, H., Soy, G., & Çavdar, P. S. (2021). Heat treatment of 2024 and 5083 aluminum materials by induction, a competitive method, and cost analysis. Journal of Inorganic and Organometallic Polymers and Materials, 31, 1754-1763.
  • 21. Çubuk, H. S., & Çavdar, U. Investigation of mechanical properties of nano boron nitride added aluminum material produced by different production method. International Scientific and Vocational Studies Journal, 6(2), 51-59.
  • 22. Karaca, B., & Çavdar, U. (2014). Saf ve bor karbür takviyeli alüminyum tozlarının ultra yüksek frekanslı indüksiyon jeneratörü ile sinterlenmesi. Mühendis ve Makina, 55(657), 59-64.
Yıl 2023, , 29 - 40, 04.07.2023
https://doi.org/10.38061/idunas.1310506

Öz

Kaynakça

  • 1. Gökçe, A., Fındık, F., & Kurt, A. O. (2017). Alüminyum ve alaşımlarının toz metalurjisi işlemleri. Mühendis ve Makina, 58(686), 21-47.
  • 2. Halil, A. R. I. K., Kırmızı, G., & Semerci, P. (2017). Sıcak presleme ile alüminyum matrisli ve al2o3 takviyeli toz metal kompozit malzeme üretimi ve abrasif aşınma davranışının araştırılması. Gazi University Journal of Science Part C: Design and Technology, 5(4), 87-97.
  • 3. Kumar, N., Bharti, A., & Saxena, K. K. (2021). A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites. Materials Today: Proceedings, 44, 2188-2193. 4. Pickens, J. R. (1981). Aluminium powder metallurgy technology for high-strength applications. Journal of Materials Science, 16, 1437-1457. 5. Nassar, A. E., & Nassar, E. E. (2017). Properties of aluminum matrix Nano composites prepared by powder metallurgy processing. Journal of King Saud University-Engineering Sciences, 29(3), 295-299.
  • 6. Anderson, I. E., & Foley, J. C. (2001). Determining the role of surfaces and interfaces in the powder metallurgy processing of aluminum alloy powders. Surface and Interface Analysis, 31(7), 599-608.
  • 7. Awotunde, M. A., Adegbenjo, A. O., Shongwe, M. B., & Olubambi, P. A. (2019). Spark Plasma Sintering of Aluminium-Based Materials. In Spark Plasma Sintering of Materials, Spring eBooks, 191–218. https://doi.org/10.1007/978-3-030-05327-7_7
  • 8. Hsieh, C. T., Ho, Y. C., Wang, H., Sugiyama, S., & Yanagimoto, J. (2020). Mechanical and tribological characterization of nanostructured graphene sheets/A6061 composites fabricated by induction sintering and hot extrusion. Materials Science and Engineering: A, 786, 138998.
  • 9. Seikh, A. H., Baig, M., Singh, J. K., Mohammed, J. A., Luqman, M., Abdo, H. S., ... & Alharthi, N. H. (2019). Microstructural and corrosion characteristics of Al-Fe alloys produced by high-frequency induction-sintering process. Coatings, 9(10), 686.
  • 10. Mendoza, J. M., Estrada-Guel, I., Garay, C., Romero, M. I., Perez-Bustamante, R., Carreño-Gallardo, C., & Martínez-Sánchez, R. Impact of process conditions on the mechanical properties, structure and microstructure of milled aluminum sintered through rapid induction heating. SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4273156
  • 11. Ujah, C. O., & Kallon, D. V. V. (2022). Trends in aluminium matrix composite development. Crystals, 12(10), 1357.
  • 12. Dudina, D. V., Georgarakis, K., & Olevsky, E. A. (2023). Progress in aluminium and magnesium matrix composites obtained by spark plasma, microwave and induction sintering. International Materials Reviews, 68(2), 225-246.
  • 13. Oliver, U. C., Sunday, A. V., Christain, E. I. E. I., & Elizabeth, M. M. (2021). Spark plasma sintering of aluminium composites—a review. The International Journal of Advanced Manufacturing Technology, 112, 1819-1839.
  • 14. Çavdar, U., & Sarı Çavdar, P. (2019). Demir esaslı toz metal malzemelerin ultra-yüksek frekanslı indüksiyon sistemi ile sinterleme sıcaklığı optimizasyonu, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(2009), 378-383.
  • 15. Choudhury, A., Nanda, J., & Das, S. N. (2021, November). Sintering sensitivity of aluminium metal matrix composites developed through powder metallurgy proposed technique-a review. Journal of Physics: Conference Series, 2070(1), 012193. IOP Publishing.
  • 16. Akkurt, O., Altıntaş, A., Çavdar, P., & Çavdar, U. Effect on the mechanical properties of sintering process of aluminium alloys. International Scientific and Vocational Studies Journal, 3(2), 85-91.
  • 17. Taştan, M., Gökozan, H., Çavdar, P. S., Soy, G., & Çavdar, U. (2020). Cost analysis of T6 induction heat treatment for the aluminum-copper powder metal compacts. Science of Sintering, 52(1), 77-85.
  • 18. Kohli, A., & Singh, H. (2011). Optimization of processing parameters in induction hardening using response surface methodology. Sadhana, 36(2), 141-152.
  • 19. Palaniradja, K., Alagumurthi, N., & Soundararajan, V. (2010). Modeling of phase transformation in induction hardening. The Open Materials Science Journal, 4(1), 64-73
  • 20. Çavdar, U., Taştan, M., Gökozan, H., Soy, G., & Çavdar, P. S. (2021). Heat treatment of 2024 and 5083 aluminum materials by induction, a competitive method, and cost analysis. Journal of Inorganic and Organometallic Polymers and Materials, 31, 1754-1763.
  • 21. Çubuk, H. S., & Çavdar, U. Investigation of mechanical properties of nano boron nitride added aluminum material produced by different production method. International Scientific and Vocational Studies Journal, 6(2), 51-59.
  • 22. Karaca, B., & Çavdar, U. (2014). Saf ve bor karbür takviyeli alüminyum tozlarının ultra yüksek frekanslı indüksiyon jeneratörü ile sinterlenmesi. Mühendis ve Makina, 55(657), 59-64.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Makaleler
Yazarlar

Hıdır Sercan Çubuk 0000-0001-6598-351X

Tural Ege Ertaş 0000-0003-1221-4148

Uğur Çavdar 0000-0002-3434-6670

Yayımlanma Tarihi 4 Temmuz 2023
Kabul Tarihi 27 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çubuk, H. S., Ertaş, T. E., & Çavdar, U. (2023). COLD PRESSED PURE ALUMINUM POWDERS SINTERING WITH ULTRA HIGH FREQUENCY INDUCTION. Natural and Applied Sciences Journal, 6(1), 29-40. https://doi.org/10.38061/idunas.1310506