Araştırma Makalesi
BibTex RIS Kaynak Göster

IMPROVING THE QUANTIFICATION ACCURACY OF Tc-99m MIBI DUAL-PHASE PARATHYROID SPECT/CT: A MONTE CARLO SIMULATION STUDY

Yıl 2023, , 9 - 23, 30.12.2023
https://doi.org/10.38061/idunas.1325839

Öz

Objective: Quantitative parathyroid SPECT imaging is a technique used to assess Primary hyperparathyroidism that may have potential in the identification and differentiation of parathyroid lesions as well as the estimation of disease severity. Studying the effect of data acquisition parameters on the quantification error is important for maximizing the accuracy of this diagnostic technique. In this study we examine the effects of different data acquisition parameters, namely the type of collimator, scatter correction status and reconstruction iteration number on the quantification accuracy using computer simulation. Methods: The SIMIND Monte Carlo Simulation and CASToR iterative reconstruction program was used to simulate a commercially available SPECT camera (Siemens Symbia Intevo Gamma Camera) with a crystal size of 29.55cm and 128x128 matrix size. A digital cylindrical phantom filled with water was constructed. A 0.36 cm radius spherical adenoma filled with a uniform 1MBq radioactivity is placed within the phantom. Low-Energy High Resolution (LEHR) and Low Energy Ultra High Resolution (LEUHR) collimator models are tested. Along with the presence of Scatter correction and differing iteration numbers (x16, x32). An image FOV based calibration method was used to gather quantitative information and checked against the input radioactivity. Results: The presence of scatter correction caused a 15-20% relative improvement in quantification accuracy. The optimal number of iterations produced a 10% relative improvement. Overall, accuracies as good as 7% in estimated activity concentration could be observed. Conclusion: The optimization of parameters can provide a significant improvement in quantification accuracy.

Kaynakça

  • 1. Anon. (2016). ‘EANM’16’. Pp. 1–734 in European journal of nuclear medicine and molecular imaging. Vol. 43.
  • 2. Bahreyni Toossi, M. T., J. Pirayesh Islamian, M. Momennezhad, M. Ljungberg, and S. H. Naseri. (2010). ‘SIMIND Monte Carlo Simulation of a Single Photon Emission CT.’ Journal of Medical Physics 35(1):42–47. doi: 10.4103/0971-6203.55967.
  • 3. Bailey, Dale L., and Kathy P. Willowson. (2013). ‘An Evidence-Based Review of Quantitative SPECT Imaging and Potential Clinical Applications’. Journal of Nuclear Medicine 54(1):83–89.
  • 4. Bailey, Dale L., and Kathy P. Willowson. (2014). ‘Quantitative SPECT/CT: SPECT Joins PET as a Quantitative Imaging Modality’. European Journal of Nuclear Medicine and Molecular Imaging 41(SUPPL. 1). doi: 10.1007/s00259-013-2542-4.
  • 5. Bilezikian, John P., Maria Luisa Brandi, Richard Eastell, Shonni J. Silverberg, Robert Udelsman, Claudio Marcocci, and John T. Potts. (2014). ‘Guidelines for the Management of Asymptomatic Primary Hyperparathyroidism: Summary Statement from the Fourth International Workshop’. Pp. 3561–69 in Journal of Clinical Endocrinology and Metabolism. Vol. 99. Endocrine Society. 6. Bindu, Ch Hima, and K. Satya Prasad. (2012). An Efficient Medical Image Segmentation Using Conventional OTSU Method. Vol. 38.
  • 7. Bong, Jung Kyun, Hye Kyung Son, Jong Doo Lee, and Hee Joung Kim. (2005). ‘Improved Scatter Correction for SPECT Images: A Monte Carlo Study’. IEEE Transactions on Nuclear Science 52(5 I):1263–70. doi: 10.1109/TNS.2005.858202.
  • 8. Carvalho, L. E., A. C. Sobieranski, and A. von Wangenheim. (2018). ‘3D Segmentation Algorithms for Computerized Tomographic Imaging: A Systematic Literature Review’. Journal of Digital Imaging 31(6):799–850.
  • 9. Dandurand, Karel, Dalal S. Ali, and Aliya A. Khan. (2021). ‘Primary Hyperparathyroidism: A Narrative Review of Diagnosis and Medical Management’. Journal of Clinical Medicine 10(8).
  • 10. D’Arienzo, M., M. Cazzato, M. L. Cozzella, M. Cox, M. D’Andrea, A. Fazio, A. Fenwick, G. Iaccarino, L. Johansson, L. Strigari, S. Ungania, and P. De Felice. (2016). ‘Gamma Camera Calibration and Validation for Quantitative SPECT Imaging with 177Lu’. Applied Radiation and Isotopes 112:156–64. doi: 10.1016/j.apradiso.2016.03.007.
  • 11. Fahey, Frederic H., Kira Grogg, and Georges El Fakhri. (2018). ‘Use of Monte Carlo Techniques in Nuclear Medicine.’ Journal of the American College of Radiology: JACR 15(3 Pt A):446–48. doi: 10.1016/j.jacr.2017.09.045.
  • 12. Fedorov, Andriy, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jennings, Fiona Fennessy, Milan Sonka, John Buatti, Stephen Aylward, James V Miller, Steve Pieper, and Ron Kikinis. (2012). ‘3D Slicer as an Image Computing Platform for the Quantitative Imaging Network.’ Magnetic Resonance Imaging 30(9):1323–41. doi: 10.1016/j.mri.2012.05.001.
  • 13. Fraser, William D. (2009). ‘Hyperparathyroidism’. The Lancet 374(9684):145–58.
  • 14. Frezza, Andrea, Corentin Desport, Carlos Uribe, Wei Zhao, Anna Celler, Philippe Després, and Jean Mathieu Beauregard. (2020). ‘Comprehensive SPECT/CT System Characterization and Calibration for 177Lu Quantitative SPECT (QSPECT) with Dead-Time Correction’. EJNMMI Physics 7(1). doi: 10.1186/s40658-020-0275-6.
  • 15. Gustafsson, Johan, Gustav Brolin, and Michael Ljungberg. (2018). ‘Monte Carlo-Based SPECT Reconstruction within the SIMIND Framework’. Physics in Medicine & Biology 63(24):245012. doi: 10.1088/1361-6560/aaf0f1.
  • 16. Halty, Adrien, Jean Noël Badel, Olga Kochebina, and David Sarrut. (2018). ‘Image-Based SPECT Calibration Based on the Evaluation of the Fraction of Activity in the Field of View’. EJNMMI Physics 5(1). doi: 10.1186/s40658-018-0209-8.
  • 17. Harris, Luke, John Yoo, Albert Driedger, Kevin Fung, Jason Franklin, Daryl Gray, and Ronald Holliday. (2008). ‘Accuracy of Technetium‐99m SPECT‐CT Hybrid Images in Predicting the Precise Intraoperative Anatomical Location of Parathyroid Adenomas’. Head & Neck 30(4):509–17. doi: 10.1002/hed.20727.
  • 18. Harrison, Robert L. (2009). ‘Introduction to Monte Carlo Simulation’. Pp. 17–21 in AIP Conference Proceedings. Vol. 1204.
  • 19. Havel, Martin, Vladimir Dedek, Michal Kolacek, and Martin Formanek. (2022). ‘Quantitative Analysis in Parathyroid Adenoma Scintigraphy’. Nuclear Medicine Communications 43(1):1–7. doi: 10.1097/MNM.0000000000001474.
  • 20. Hima Bindu, Ch. (2009). An Improved Medical Image Segmentation Algorithm Using Otsu Method. Vol. 2.
  • 21. Hwang, Andrew B., Benjamin L. Franc, Grant T. Gullberg, and Bruce H. Hasegawa. (2008). ‘Assessment of the Sources of Error Affecting the Quantitative Accuracy of SPECT Imaging in Small Animals’. Physics in Medicine and Biology 53(9):2233–52. doi: 10.1088/0031-9155/53/9/002.
  • 22. Ilahi, Ali, Erind Muco, and Tahir B. Ilahi. (2022). Anatomy, Head and Neck, Parathyroid.
  • 23. Im, Hyung-Jun, In Ki Lee, Jin Chul Paeng, Kyu Eun Lee, Gi Jeong Cheon, Keon Wook Kang, June-Key Chung, and Dong Soo Lee. (2014). ‘Functional Evaluation of Parathyroid Adenoma Using 99mTc-MIBI Parathyroid SPECT/CT’. Nuclear Medicine Communications 35(6):649–54. doi: 10.1097/MNM.0000000000000102.
  • 24. Jiang, Shu Qin, Ting Yang, Qiong Zou, Lei Xu, Ting Ye, Yin Qian Kang, Wan Ru Li, Ju Jiao, and Yong Zhang. (2020). ‘The Role of 99mTc-MIBI SPECT/CT in Patients with Secondary Hyperparathyroidism: Comparison with 99mTc-MIBI Planar Scintigraphy and Ultrasonography’. BMC Medical Imaging 20(1). doi: 10.1186/s12880-020-00517-9.
  • 25. Jun, Zhang, and Hu Jinglu. (2008). ‘Image Segmentation Based on 2D Otsu Method with Histogram Analysis’. Pp. 105–8 in Proceedings - International Conference on Computer Science and Software Engineering, CSSE 2008. Vol. 6.
  • 26. Khouli, Riham El, Martin Lodge, Martha Zeiger, Melin Vranesic, Harvey Ziessman, and Zsolt Szabo. (2015a). ‘Quantitative SPECT CT of the Parathyroid with SUV Measurements’. Journal of Nuclear Medicine 56(supplement 3):1645.
  • 27. Khouli, Riham El, Martin Lodge, Martha Zeiger, Melin Vranesic, Harvey Ziessman, and Zsolt Szabo. (2015b). ‘Quantitative SPECT CT of the Parathyroid with SUV Measurements’. Journal of Nuclear Medicine 56(supplement 3):1645.
  • 28. Khouli, Riham El, Evrim Turkbey, Martin Lodge, Melin Vranesic, Harvey Ziessman, Don Spence, Xinhong Ding, Alexander Vija, and Zsolt Szabo. (2017a). ‘Standardized Uptake Value Based Assessment of Dual Phase Parathyroid SPECT CT: Promising Role in Equivocal Cases’. Journal of Nuclear Medicine 58(supplement 1):101.
  • 29. Khouli, Riham El, Evrim Turkbey, Martin Lodge, Melin Vranesic, Harvey Ziessman, Don Spence, Xinhong Ding, Alexander Vija, and Zsolt Szabo. (2017b). ‘Standardized Uptake Value Based Assessment of Dual Phase Parathyroid SPECT CT: Promising Role in Equivocal Cases’. Journal of Nuclear Medicine 58(supplement 1):101.
  • 30. Kim, Hyun Joo, Ji In Bang, Ji Young Kim, Jae Hoon Moon, Young So, and Won Woo Lee. (2017). ‘Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves’ Disease’. Korean Journal of Radiology 18(3):543–50. doi: 10.3348/kjr.2017.18.3.543.
  • 31. Lee, Hyunjong, Ji Hyun Kim, Yeon Koo Kang, Jae Hoon Moon, Young So, and Won Woo Lee. (2016). ‘Quantitative Single-Photon Emission Computed Tomography/Computed Tomography for Technetium Pertechnetate Thyroid Uptake Measurement’. Medicine (United States) 95(27). doi: 10.1097/MD.0000000000004170.
  • 32. Listewnik, Maria H., Hanna Piwowarska-Bilska, Krzysztof Safranow, Jacek Iwanowski, Maria Laszczyńska, Maria Chosia, Marek Ostrowski, Bozena Birkenfeld, Dorota Oszutowska-Mazurek, and Przemyslaw Mazurek. (2019). ‘Estimation of Parameters of Parathyroid Glands Using Particle Swarm Optimization and Multivariate Generalized Gaussian Function Mixture’. Applied Sciences (Switzerland) 9(21). doi: 10.3390/app9214511.
  • 33. Ljungberg, Michael. n.d. The SIMIND Monte-Carlo Program.
  • 34. Ljungberg, Michael, Katarina Sjögreen, Xiaowei Liu, Eric Frey, Yuni Dewaraja, and Sven-Erik Strand. (2002). ‘A 3-Dimensional Absorbed Dose Calculation Method Based on Quantitative SPECT for Radionuclide Therapy: Evaluation for 131I Using Monte Carlo Simulation’. Journal of Nuclear Medicine 43(8):1101.
  • 35. Ljungberg, Michael, and Katarina Sjögreen-Gleisner. (2011). ‘The Accuracy of Absorbed Dose Estimates in Tumours Determined by Quantitative SPECT: A Monte Carlo Study’. Pp. 981–89 in Acta Oncologica. Vol. 50.
  • 36. Ma, Junhao, Jun Yang, Chuanzhi Chen, Yimin Lu, Zhuochao Mao, Haohao Wang, Yan Yang, Zhongqi Li, Weibin Wang, and Lisong Teng. (2021). ‘Use of 99mTc-Sestamibi SPECT/CT Imaging in Predicting the Degree of Pathological Hyperplasia of the Parathyroid Gland: Semi-Quantitative Analysis’. Quantitative Imaging in Medicine and Surgery 11(10):4375–88. doi: 10.21037/qims-21-66.
  • 37. Merlin, Thibaut, Simon Stute, Didier Benoit, Julien Bert, Thomas Carlier, Claude Comtat, Marina Filipovic, Frédéric Lamare, and Dimitris Visvikis. (2018). ‘CASToR: A Generic Data Organization and Processing Code Framework for Multi-Modal and Multi-Dimensional Tomographic Reconstruction’. Physics in Medicine & Biology 63(18):185005. doi: 10.1088/1361-6560/aadac1.
  • 38. Minarik, D., K. Sjögreen Gleisner, and M. Ljungberg. (2008). ‘Evaluation of Quantitative 90Y SPECT Based on Experimental Phantom Studies’. Physics in Medicine and Biology 53(20):5689–5703. doi: 10.1088/0031-9155/53/20/008.
  • 39. Ogawa, Koichi, Yasuo Harata, Takashi Ichihara, Atsushi Kubo, and Shozo Hashimoto. (1991). ‘A Practical Method for Position-Dependent Compton-Scatter Correction in Single Photon Emission CT’. IEEE Transactions on Medical Imaging 10(3):408–12. doi: 10.1109/42.97591.
  • 40. Oral, Ayscgul, and Albert Guvenis. (2019). ‘A Digital Platform for Simulating the Accurate Detectability of Overactive Parathyroid Glands in SPECT/CT Imaging’. in TIPTEKNO 2019 - Tip Teknolojileri Kongresi. Institute of Electrical and Electronics Engineers Inc.
  • 41. Oral, Aysegul, and Albert Guvenis. (2021). ‘Improving the Detectability of Overactive Glands in Dual-Phase Parathyroid SPECT/CT: A Monte Carlo Simulation Study’. Biomedical Physics and Engineering Express 7(4). doi: 10.1088/2057-1976/ac0954.
  • 42. Pagnanelli, Robert, and Salvador Borges-Neto. (2016). ‘Technical Aspects of Resolution Recovery Reconstruction’. Journal of Nuclear Cardiology 23(1):149–52. doi: 10.1007/s12350-015-0345-7.
  • 43. Patton, James A., and Timothy G. Turkington. (2008). ‘SPECT/CT Physical Principles and Attenuation Correction’. Journal of Nuclear Medicine Technology 36(1):1. doi: 10.2967/jnmt.107.046839.
  • 44. Razavi, Simin, Blair Ziebarth, Ran Klein, and Wanzhen Zeng. (2018). ‘Dual Time-Point Quantitative SPECT-CT Parathyroid Imaging Using a Single Computed Tomography’. Nuclear Medicine Communications 39(1):3–9. doi: 10.1097/MNM.0000000000000761.
  • 45. Ritt, Philipp, Hans Vija, Joachim Hornegger, and Torsten Kuwert. (2011). ‘Absolute Quantification in SPECT’. European Journal of Nuclear Medicine and Molecular Imaging 38(SUPPL. 1).
  • 46. Robin, Philippe, Ran Klein, Jeremy Gardner, Blair Ziebarth, Sadri Bazarjani, Simin Razavi, Lionel S. Zuckier, and Wanzhen Zeng. (2019). ‘Quantitative Analysis of Technetium-99m-Sestamibi Uptake and Washout in Parathyroid Scintigraphy Supports Dual Mechanisms of Lesion Conspicuity’. Nuclear Medicine Communications 40(5):469–76. doi: 10.1097/MNM.0000000000000996.
  • 47. Suh, Hoon Young, Hee Young Na, So Yeon Park, June Young Choi, Young So, and Won Woo Lee. (2020). ‘The Usefulness of Maximum Standardized Uptake Value at the Delayed Phase of Tc-99m Sestamibi Single-Photon Emission Computed Tomography/Computed Tomography for Identification of Parathyroid Adenoma and Hyperplasia’. Medicine 99(28):e21176. doi: 10.1097/MD.0000000000021176. 48. Tunninen, Virpi, T. Kauppinen, and H. Eskola. (2017). ‘Physical Characteristics of Collimators for Dual-Isotope Imaging with 99mTc and 123I’. Pp. 245–49 in IFMBE Proceedings. Vol. 65. Springer Verlag.
  • 49. Vasavada, Anita N., Jonathan Danaraj, and Gunter P. Siegmund. (2008). ‘Head and Neck Anthropometry, Vertebral Geometry and Neck Strength in Height-Matched Men and Women’. Journal of Biomechanics 41(1):114–21. doi: 10.1016/j.jbiomech.2007.07.007.
  • 50. Wang, Yuhua, Ye Liu, Na Li, Kang Xu, and Wanchun Zhang. (2023a). ‘Quantitative Application of Dual-Phase 99mTc-Sestamibi SPECT/CT Imaging of Parathyroid Lesions: Identification of Optimal Timing in Secondary Hyperparathyroidism’. EJNMMI Physics 10(1). doi: 10.1186/s40658-023-00548-5.
  • 51. Wang, Yuhua, Ye Liu, Na Li, Kang Xu, and Wanchun Zhang. (2023b). ‘Quantitative Application of Dual-Phase 99mTc-Sestamibi SPECT/CT Imaging of Parathyroid Lesions: Identification of Optimal Timing in Secondary Hyperparathyroidism’. EJNMMI Physics 10(1). doi: 10.1186/s40658-023-00548-5.
  • 52. Wang, Yuhua, Ye Liu, Na Li, Kang Xu, and Wanchun Zhang. (2023c). ‘Quantitative Application of Dual-Phase 99mTc-Sestamibi SPECT/CT Imaging of Parathyroid Lesions: Identification of Optimal Timing in Secondary Hyperparathyroidism’. EJNMMI Physics 10(1):29. doi: 10.1186/s40658-023-00548-5.
  • 53. Wevrett, J., A. Fenwick, J. Scuffham, and A. Nisbet. (2017). ‘Development of a Calibration Protocol for Quantitative Imaging for Molecular Radiotherapy Dosimetry’. Radiation Physics and Chemistry 140:355–60. doi: 10.1016/j.radphyschem.2017.02.053.
  • 54. Wieneke, Jacqueline A., and Alice Smith. (2008). ‘Parathyroid Adenoma.’ Head and Neck Pathology 2(4):305–8. doi: 10.1007/s12105-008-0088-8.
  • 55. Zaidi, Habib. (1999). ‘Relevance of Accurate Monte Carlo Modeling in Nuclear Medical Imaging’. Medical Physics 26(4):574–608.
  • 56. Zeintl, Johannes, Alexander Hans Vija, Amos Yahil, Joachim Hornegger, and Torsten Kuwert. (2010). ‘Quantitative Accuracy of Clinical 99mTc SPECT/CT Using Ordered-Subset Expectation Maximization with 3-Dimensional Resolution Recovery, Attenuation, and Scatter Correction’. Journal of Nuclear Medicine 51(6):921–28. doi: 10.2967/jnumed.109.071571.
Yıl 2023, , 9 - 23, 30.12.2023
https://doi.org/10.38061/idunas.1325839

Öz

Kaynakça

  • 1. Anon. (2016). ‘EANM’16’. Pp. 1–734 in European journal of nuclear medicine and molecular imaging. Vol. 43.
  • 2. Bahreyni Toossi, M. T., J. Pirayesh Islamian, M. Momennezhad, M. Ljungberg, and S. H. Naseri. (2010). ‘SIMIND Monte Carlo Simulation of a Single Photon Emission CT.’ Journal of Medical Physics 35(1):42–47. doi: 10.4103/0971-6203.55967.
  • 3. Bailey, Dale L., and Kathy P. Willowson. (2013). ‘An Evidence-Based Review of Quantitative SPECT Imaging and Potential Clinical Applications’. Journal of Nuclear Medicine 54(1):83–89.
  • 4. Bailey, Dale L., and Kathy P. Willowson. (2014). ‘Quantitative SPECT/CT: SPECT Joins PET as a Quantitative Imaging Modality’. European Journal of Nuclear Medicine and Molecular Imaging 41(SUPPL. 1). doi: 10.1007/s00259-013-2542-4.
  • 5. Bilezikian, John P., Maria Luisa Brandi, Richard Eastell, Shonni J. Silverberg, Robert Udelsman, Claudio Marcocci, and John T. Potts. (2014). ‘Guidelines for the Management of Asymptomatic Primary Hyperparathyroidism: Summary Statement from the Fourth International Workshop’. Pp. 3561–69 in Journal of Clinical Endocrinology and Metabolism. Vol. 99. Endocrine Society. 6. Bindu, Ch Hima, and K. Satya Prasad. (2012). An Efficient Medical Image Segmentation Using Conventional OTSU Method. Vol. 38.
  • 7. Bong, Jung Kyun, Hye Kyung Son, Jong Doo Lee, and Hee Joung Kim. (2005). ‘Improved Scatter Correction for SPECT Images: A Monte Carlo Study’. IEEE Transactions on Nuclear Science 52(5 I):1263–70. doi: 10.1109/TNS.2005.858202.
  • 8. Carvalho, L. E., A. C. Sobieranski, and A. von Wangenheim. (2018). ‘3D Segmentation Algorithms for Computerized Tomographic Imaging: A Systematic Literature Review’. Journal of Digital Imaging 31(6):799–850.
  • 9. Dandurand, Karel, Dalal S. Ali, and Aliya A. Khan. (2021). ‘Primary Hyperparathyroidism: A Narrative Review of Diagnosis and Medical Management’. Journal of Clinical Medicine 10(8).
  • 10. D’Arienzo, M., M. Cazzato, M. L. Cozzella, M. Cox, M. D’Andrea, A. Fazio, A. Fenwick, G. Iaccarino, L. Johansson, L. Strigari, S. Ungania, and P. De Felice. (2016). ‘Gamma Camera Calibration and Validation for Quantitative SPECT Imaging with 177Lu’. Applied Radiation and Isotopes 112:156–64. doi: 10.1016/j.apradiso.2016.03.007.
  • 11. Fahey, Frederic H., Kira Grogg, and Georges El Fakhri. (2018). ‘Use of Monte Carlo Techniques in Nuclear Medicine.’ Journal of the American College of Radiology: JACR 15(3 Pt A):446–48. doi: 10.1016/j.jacr.2017.09.045.
  • 12. Fedorov, Andriy, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jennings, Fiona Fennessy, Milan Sonka, John Buatti, Stephen Aylward, James V Miller, Steve Pieper, and Ron Kikinis. (2012). ‘3D Slicer as an Image Computing Platform for the Quantitative Imaging Network.’ Magnetic Resonance Imaging 30(9):1323–41. doi: 10.1016/j.mri.2012.05.001.
  • 13. Fraser, William D. (2009). ‘Hyperparathyroidism’. The Lancet 374(9684):145–58.
  • 14. Frezza, Andrea, Corentin Desport, Carlos Uribe, Wei Zhao, Anna Celler, Philippe Després, and Jean Mathieu Beauregard. (2020). ‘Comprehensive SPECT/CT System Characterization and Calibration for 177Lu Quantitative SPECT (QSPECT) with Dead-Time Correction’. EJNMMI Physics 7(1). doi: 10.1186/s40658-020-0275-6.
  • 15. Gustafsson, Johan, Gustav Brolin, and Michael Ljungberg. (2018). ‘Monte Carlo-Based SPECT Reconstruction within the SIMIND Framework’. Physics in Medicine & Biology 63(24):245012. doi: 10.1088/1361-6560/aaf0f1.
  • 16. Halty, Adrien, Jean Noël Badel, Olga Kochebina, and David Sarrut. (2018). ‘Image-Based SPECT Calibration Based on the Evaluation of the Fraction of Activity in the Field of View’. EJNMMI Physics 5(1). doi: 10.1186/s40658-018-0209-8.
  • 17. Harris, Luke, John Yoo, Albert Driedger, Kevin Fung, Jason Franklin, Daryl Gray, and Ronald Holliday. (2008). ‘Accuracy of Technetium‐99m SPECT‐CT Hybrid Images in Predicting the Precise Intraoperative Anatomical Location of Parathyroid Adenomas’. Head & Neck 30(4):509–17. doi: 10.1002/hed.20727.
  • 18. Harrison, Robert L. (2009). ‘Introduction to Monte Carlo Simulation’. Pp. 17–21 in AIP Conference Proceedings. Vol. 1204.
  • 19. Havel, Martin, Vladimir Dedek, Michal Kolacek, and Martin Formanek. (2022). ‘Quantitative Analysis in Parathyroid Adenoma Scintigraphy’. Nuclear Medicine Communications 43(1):1–7. doi: 10.1097/MNM.0000000000001474.
  • 20. Hima Bindu, Ch. (2009). An Improved Medical Image Segmentation Algorithm Using Otsu Method. Vol. 2.
  • 21. Hwang, Andrew B., Benjamin L. Franc, Grant T. Gullberg, and Bruce H. Hasegawa. (2008). ‘Assessment of the Sources of Error Affecting the Quantitative Accuracy of SPECT Imaging in Small Animals’. Physics in Medicine and Biology 53(9):2233–52. doi: 10.1088/0031-9155/53/9/002.
  • 22. Ilahi, Ali, Erind Muco, and Tahir B. Ilahi. (2022). Anatomy, Head and Neck, Parathyroid.
  • 23. Im, Hyung-Jun, In Ki Lee, Jin Chul Paeng, Kyu Eun Lee, Gi Jeong Cheon, Keon Wook Kang, June-Key Chung, and Dong Soo Lee. (2014). ‘Functional Evaluation of Parathyroid Adenoma Using 99mTc-MIBI Parathyroid SPECT/CT’. Nuclear Medicine Communications 35(6):649–54. doi: 10.1097/MNM.0000000000000102.
  • 24. Jiang, Shu Qin, Ting Yang, Qiong Zou, Lei Xu, Ting Ye, Yin Qian Kang, Wan Ru Li, Ju Jiao, and Yong Zhang. (2020). ‘The Role of 99mTc-MIBI SPECT/CT in Patients with Secondary Hyperparathyroidism: Comparison with 99mTc-MIBI Planar Scintigraphy and Ultrasonography’. BMC Medical Imaging 20(1). doi: 10.1186/s12880-020-00517-9.
  • 25. Jun, Zhang, and Hu Jinglu. (2008). ‘Image Segmentation Based on 2D Otsu Method with Histogram Analysis’. Pp. 105–8 in Proceedings - International Conference on Computer Science and Software Engineering, CSSE 2008. Vol. 6.
  • 26. Khouli, Riham El, Martin Lodge, Martha Zeiger, Melin Vranesic, Harvey Ziessman, and Zsolt Szabo. (2015a). ‘Quantitative SPECT CT of the Parathyroid with SUV Measurements’. Journal of Nuclear Medicine 56(supplement 3):1645.
  • 27. Khouli, Riham El, Martin Lodge, Martha Zeiger, Melin Vranesic, Harvey Ziessman, and Zsolt Szabo. (2015b). ‘Quantitative SPECT CT of the Parathyroid with SUV Measurements’. Journal of Nuclear Medicine 56(supplement 3):1645.
  • 28. Khouli, Riham El, Evrim Turkbey, Martin Lodge, Melin Vranesic, Harvey Ziessman, Don Spence, Xinhong Ding, Alexander Vija, and Zsolt Szabo. (2017a). ‘Standardized Uptake Value Based Assessment of Dual Phase Parathyroid SPECT CT: Promising Role in Equivocal Cases’. Journal of Nuclear Medicine 58(supplement 1):101.
  • 29. Khouli, Riham El, Evrim Turkbey, Martin Lodge, Melin Vranesic, Harvey Ziessman, Don Spence, Xinhong Ding, Alexander Vija, and Zsolt Szabo. (2017b). ‘Standardized Uptake Value Based Assessment of Dual Phase Parathyroid SPECT CT: Promising Role in Equivocal Cases’. Journal of Nuclear Medicine 58(supplement 1):101.
  • 30. Kim, Hyun Joo, Ji In Bang, Ji Young Kim, Jae Hoon Moon, Young So, and Won Woo Lee. (2017). ‘Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves’ Disease’. Korean Journal of Radiology 18(3):543–50. doi: 10.3348/kjr.2017.18.3.543.
  • 31. Lee, Hyunjong, Ji Hyun Kim, Yeon Koo Kang, Jae Hoon Moon, Young So, and Won Woo Lee. (2016). ‘Quantitative Single-Photon Emission Computed Tomography/Computed Tomography for Technetium Pertechnetate Thyroid Uptake Measurement’. Medicine (United States) 95(27). doi: 10.1097/MD.0000000000004170.
  • 32. Listewnik, Maria H., Hanna Piwowarska-Bilska, Krzysztof Safranow, Jacek Iwanowski, Maria Laszczyńska, Maria Chosia, Marek Ostrowski, Bozena Birkenfeld, Dorota Oszutowska-Mazurek, and Przemyslaw Mazurek. (2019). ‘Estimation of Parameters of Parathyroid Glands Using Particle Swarm Optimization and Multivariate Generalized Gaussian Function Mixture’. Applied Sciences (Switzerland) 9(21). doi: 10.3390/app9214511.
  • 33. Ljungberg, Michael. n.d. The SIMIND Monte-Carlo Program.
  • 34. Ljungberg, Michael, Katarina Sjögreen, Xiaowei Liu, Eric Frey, Yuni Dewaraja, and Sven-Erik Strand. (2002). ‘A 3-Dimensional Absorbed Dose Calculation Method Based on Quantitative SPECT for Radionuclide Therapy: Evaluation for 131I Using Monte Carlo Simulation’. Journal of Nuclear Medicine 43(8):1101.
  • 35. Ljungberg, Michael, and Katarina Sjögreen-Gleisner. (2011). ‘The Accuracy of Absorbed Dose Estimates in Tumours Determined by Quantitative SPECT: A Monte Carlo Study’. Pp. 981–89 in Acta Oncologica. Vol. 50.
  • 36. Ma, Junhao, Jun Yang, Chuanzhi Chen, Yimin Lu, Zhuochao Mao, Haohao Wang, Yan Yang, Zhongqi Li, Weibin Wang, and Lisong Teng. (2021). ‘Use of 99mTc-Sestamibi SPECT/CT Imaging in Predicting the Degree of Pathological Hyperplasia of the Parathyroid Gland: Semi-Quantitative Analysis’. Quantitative Imaging in Medicine and Surgery 11(10):4375–88. doi: 10.21037/qims-21-66.
  • 37. Merlin, Thibaut, Simon Stute, Didier Benoit, Julien Bert, Thomas Carlier, Claude Comtat, Marina Filipovic, Frédéric Lamare, and Dimitris Visvikis. (2018). ‘CASToR: A Generic Data Organization and Processing Code Framework for Multi-Modal and Multi-Dimensional Tomographic Reconstruction’. Physics in Medicine & Biology 63(18):185005. doi: 10.1088/1361-6560/aadac1.
  • 38. Minarik, D., K. Sjögreen Gleisner, and M. Ljungberg. (2008). ‘Evaluation of Quantitative 90Y SPECT Based on Experimental Phantom Studies’. Physics in Medicine and Biology 53(20):5689–5703. doi: 10.1088/0031-9155/53/20/008.
  • 39. Ogawa, Koichi, Yasuo Harata, Takashi Ichihara, Atsushi Kubo, and Shozo Hashimoto. (1991). ‘A Practical Method for Position-Dependent Compton-Scatter Correction in Single Photon Emission CT’. IEEE Transactions on Medical Imaging 10(3):408–12. doi: 10.1109/42.97591.
  • 40. Oral, Ayscgul, and Albert Guvenis. (2019). ‘A Digital Platform for Simulating the Accurate Detectability of Overactive Parathyroid Glands in SPECT/CT Imaging’. in TIPTEKNO 2019 - Tip Teknolojileri Kongresi. Institute of Electrical and Electronics Engineers Inc.
  • 41. Oral, Aysegul, and Albert Guvenis. (2021). ‘Improving the Detectability of Overactive Glands in Dual-Phase Parathyroid SPECT/CT: A Monte Carlo Simulation Study’. Biomedical Physics and Engineering Express 7(4). doi: 10.1088/2057-1976/ac0954.
  • 42. Pagnanelli, Robert, and Salvador Borges-Neto. (2016). ‘Technical Aspects of Resolution Recovery Reconstruction’. Journal of Nuclear Cardiology 23(1):149–52. doi: 10.1007/s12350-015-0345-7.
  • 43. Patton, James A., and Timothy G. Turkington. (2008). ‘SPECT/CT Physical Principles and Attenuation Correction’. Journal of Nuclear Medicine Technology 36(1):1. doi: 10.2967/jnmt.107.046839.
  • 44. Razavi, Simin, Blair Ziebarth, Ran Klein, and Wanzhen Zeng. (2018). ‘Dual Time-Point Quantitative SPECT-CT Parathyroid Imaging Using a Single Computed Tomography’. Nuclear Medicine Communications 39(1):3–9. doi: 10.1097/MNM.0000000000000761.
  • 45. Ritt, Philipp, Hans Vija, Joachim Hornegger, and Torsten Kuwert. (2011). ‘Absolute Quantification in SPECT’. European Journal of Nuclear Medicine and Molecular Imaging 38(SUPPL. 1).
  • 46. Robin, Philippe, Ran Klein, Jeremy Gardner, Blair Ziebarth, Sadri Bazarjani, Simin Razavi, Lionel S. Zuckier, and Wanzhen Zeng. (2019). ‘Quantitative Analysis of Technetium-99m-Sestamibi Uptake and Washout in Parathyroid Scintigraphy Supports Dual Mechanisms of Lesion Conspicuity’. Nuclear Medicine Communications 40(5):469–76. doi: 10.1097/MNM.0000000000000996.
  • 47. Suh, Hoon Young, Hee Young Na, So Yeon Park, June Young Choi, Young So, and Won Woo Lee. (2020). ‘The Usefulness of Maximum Standardized Uptake Value at the Delayed Phase of Tc-99m Sestamibi Single-Photon Emission Computed Tomography/Computed Tomography for Identification of Parathyroid Adenoma and Hyperplasia’. Medicine 99(28):e21176. doi: 10.1097/MD.0000000000021176. 48. Tunninen, Virpi, T. Kauppinen, and H. Eskola. (2017). ‘Physical Characteristics of Collimators for Dual-Isotope Imaging with 99mTc and 123I’. Pp. 245–49 in IFMBE Proceedings. Vol. 65. Springer Verlag.
  • 49. Vasavada, Anita N., Jonathan Danaraj, and Gunter P. Siegmund. (2008). ‘Head and Neck Anthropometry, Vertebral Geometry and Neck Strength in Height-Matched Men and Women’. Journal of Biomechanics 41(1):114–21. doi: 10.1016/j.jbiomech.2007.07.007.
  • 50. Wang, Yuhua, Ye Liu, Na Li, Kang Xu, and Wanchun Zhang. (2023a). ‘Quantitative Application of Dual-Phase 99mTc-Sestamibi SPECT/CT Imaging of Parathyroid Lesions: Identification of Optimal Timing in Secondary Hyperparathyroidism’. EJNMMI Physics 10(1). doi: 10.1186/s40658-023-00548-5.
  • 51. Wang, Yuhua, Ye Liu, Na Li, Kang Xu, and Wanchun Zhang. (2023b). ‘Quantitative Application of Dual-Phase 99mTc-Sestamibi SPECT/CT Imaging of Parathyroid Lesions: Identification of Optimal Timing in Secondary Hyperparathyroidism’. EJNMMI Physics 10(1). doi: 10.1186/s40658-023-00548-5.
  • 52. Wang, Yuhua, Ye Liu, Na Li, Kang Xu, and Wanchun Zhang. (2023c). ‘Quantitative Application of Dual-Phase 99mTc-Sestamibi SPECT/CT Imaging of Parathyroid Lesions: Identification of Optimal Timing in Secondary Hyperparathyroidism’. EJNMMI Physics 10(1):29. doi: 10.1186/s40658-023-00548-5.
  • 53. Wevrett, J., A. Fenwick, J. Scuffham, and A. Nisbet. (2017). ‘Development of a Calibration Protocol for Quantitative Imaging for Molecular Radiotherapy Dosimetry’. Radiation Physics and Chemistry 140:355–60. doi: 10.1016/j.radphyschem.2017.02.053.
  • 54. Wieneke, Jacqueline A., and Alice Smith. (2008). ‘Parathyroid Adenoma.’ Head and Neck Pathology 2(4):305–8. doi: 10.1007/s12105-008-0088-8.
  • 55. Zaidi, Habib. (1999). ‘Relevance of Accurate Monte Carlo Modeling in Nuclear Medical Imaging’. Medical Physics 26(4):574–608.
  • 56. Zeintl, Johannes, Alexander Hans Vija, Amos Yahil, Joachim Hornegger, and Torsten Kuwert. (2010). ‘Quantitative Accuracy of Clinical 99mTc SPECT/CT Using Ordered-Subset Expectation Maximization with 3-Dimensional Resolution Recovery, Attenuation, and Scatter Correction’. Journal of Nuclear Medicine 51(6):921–28. doi: 10.2967/jnumed.109.071571.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Makaleler
Yazarlar

Albert Güveniş 0000-0003-0490-5184

Bahadır Aytaç 0009-0000-6795-8975

Yayımlanma Tarihi 30 Aralık 2023
Kabul Tarihi 24 Kasım 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Güveniş, A., & Aytaç, B. (2023). IMPROVING THE QUANTIFICATION ACCURACY OF Tc-99m MIBI DUAL-PHASE PARATHYROID SPECT/CT: A MONTE CARLO SIMULATION STUDY. Natural and Applied Sciences Journal, 6(2), 9-23. https://doi.org/10.38061/idunas.1325839