Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 12 Sayı: 1, 32 - 42, 27.03.2019

Öz

Kaynakça

  • [1] Akyol M. A., Conformal anti-invariant submersions from cosymplectic manifolds. Hacet. J. Math. Stat. 46(2) (2017), 177-192.
  • [2] Cengizhan M. and Erken I.K., Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions. Filomat 29(7) (2015), 1429-1444.
  • [3] Chinea, C., Almost contact metric submersions. Rend. Circ. Mat. Palermo 43(1) (1985), 89-104.
  • [4] Eells, J. and Sampson, J. H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
  • [5] Falcitelli, M., Ianus, S. and Pastore, A. M., Riemannian submersions and Related topics, World Scientific, River Edge, NJ, 2004.
  • [6] Gündüzalp, Y., Anti-invariant semi-Riemannian submersions from almost para Hermitian manifolds. Journal of Function Spaces and Applications 2013, Art. ID 720623, 7 pp.
  • [7] Gray, A., Pseudo-Riemannian almost product manifolds and submersion. J. Math. Mech. 16 (1967), 715-737.
  • [8] Ianus, S. and Pastore, A. M., Harmonic maps on contact metric manifolds. Ann. Math. Blaise Pascal 2(2) (1995), 43-53.
  • [9] Lee, J. W., Anti-invariant ?􀀀 Riemannian submersions from almost contact manifolds. Hacettepe J. Math. Stat. 42(2)(2013), 231-241. [10] O’Neill, B., The fundamental equations of a submersions. Mich. Math. J. 13 (1996), 458-469.
  • [11] Park, K.S., H-anti-invariant submersions from almost quaternionic Hermitian manifolds. Czechoslovak Math. J. 67(2) (2017), 557-578.
  • [12] Siddiqi, M. D., Ahmed, M and Ojha, J.P., CR-submanifolds of nearly-trans hyperbolic sasakian manifolds admitting semi-symmetric non-metric connection. African J. Diaspora 17(10) (2014), 93-105.
  • [13] Siddiqi, M. D. and Akyol, M. A., Anti-invariant ξ^⊥-Riemannian Submersions from hyperbolic -Kenmotsu Manifolds. CUBO A Mathematical Journal 20(1) (2018), 79-94.
  • [14] Sahin, B., Anti-invariant Riemannian submersions from almost hermition manifolds. Cent. Eur. J. Math. 8(3) (2010), 437-447.
  • [15] Şahin B., Riemannian submersions from almost Hermitian manifolds. Taiwanese J. Math. 17 (2012), 629-659.
  • [16] Şahin B., Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications. San Diego, CA, USA: Academic Press, 2017.
  • [17] Taştan, H. M. and Gerdan, S., Clairaut Anti-invariant Submersions from Sasakian and Kenmotsu Manifolds. Mediterranean J. Math. 14 (2017), no. 6, Art. 235, 17 pp.
  • [18] Upadhyay, M. D. and Dube., K. K., Almost contact hyperbolic (f, g, η, ξ) structure. Acta. Math. Acad. Scient. Hung 28 (1976), 1-4.
  • [19] Watson, B. Almost Hermitian submersions. J. Differential Geometry 11(1) (1976), 147-165.

Anti-invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds

Yıl 2019, Cilt: 12 Sayı: 1, 32 - 42, 27.03.2019

Öz

In this paper, we introduce anti-invariant  ξ^⊥-Riemannian submersions from almost hyperbolic
contact manifolds onto Riemannian manifolds. Necessary and sufficient conditions for a special
anti-invariant  ξ^⊥-Riemannian submersion to be totally geodesic are studied. Moreover, we obtain
decomposition theorems for the total manifold of such submersions.

Kaynakça

  • [1] Akyol M. A., Conformal anti-invariant submersions from cosymplectic manifolds. Hacet. J. Math. Stat. 46(2) (2017), 177-192.
  • [2] Cengizhan M. and Erken I.K., Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions. Filomat 29(7) (2015), 1429-1444.
  • [3] Chinea, C., Almost contact metric submersions. Rend. Circ. Mat. Palermo 43(1) (1985), 89-104.
  • [4] Eells, J. and Sampson, J. H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
  • [5] Falcitelli, M., Ianus, S. and Pastore, A. M., Riemannian submersions and Related topics, World Scientific, River Edge, NJ, 2004.
  • [6] Gündüzalp, Y., Anti-invariant semi-Riemannian submersions from almost para Hermitian manifolds. Journal of Function Spaces and Applications 2013, Art. ID 720623, 7 pp.
  • [7] Gray, A., Pseudo-Riemannian almost product manifolds and submersion. J. Math. Mech. 16 (1967), 715-737.
  • [8] Ianus, S. and Pastore, A. M., Harmonic maps on contact metric manifolds. Ann. Math. Blaise Pascal 2(2) (1995), 43-53.
  • [9] Lee, J. W., Anti-invariant ?􀀀 Riemannian submersions from almost contact manifolds. Hacettepe J. Math. Stat. 42(2)(2013), 231-241. [10] O’Neill, B., The fundamental equations of a submersions. Mich. Math. J. 13 (1996), 458-469.
  • [11] Park, K.S., H-anti-invariant submersions from almost quaternionic Hermitian manifolds. Czechoslovak Math. J. 67(2) (2017), 557-578.
  • [12] Siddiqi, M. D., Ahmed, M and Ojha, J.P., CR-submanifolds of nearly-trans hyperbolic sasakian manifolds admitting semi-symmetric non-metric connection. African J. Diaspora 17(10) (2014), 93-105.
  • [13] Siddiqi, M. D. and Akyol, M. A., Anti-invariant ξ^⊥-Riemannian Submersions from hyperbolic -Kenmotsu Manifolds. CUBO A Mathematical Journal 20(1) (2018), 79-94.
  • [14] Sahin, B., Anti-invariant Riemannian submersions from almost hermition manifolds. Cent. Eur. J. Math. 8(3) (2010), 437-447.
  • [15] Şahin B., Riemannian submersions from almost Hermitian manifolds. Taiwanese J. Math. 17 (2012), 629-659.
  • [16] Şahin B., Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications. San Diego, CA, USA: Academic Press, 2017.
  • [17] Taştan, H. M. and Gerdan, S., Clairaut Anti-invariant Submersions from Sasakian and Kenmotsu Manifolds. Mediterranean J. Math. 14 (2017), no. 6, Art. 235, 17 pp.
  • [18] Upadhyay, M. D. and Dube., K. K., Almost contact hyperbolic (f, g, η, ξ) structure. Acta. Math. Acad. Scient. Hung 28 (1976), 1-4.
  • [19] Watson, B. Almost Hermitian submersions. J. Differential Geometry 11(1) (1976), 147-165.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Mohd Danish Siddiqi

Mehmet Akif Akyol

Yayımlanma Tarihi 27 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 1

Kaynak Göster

APA Siddiqi, M. D., & Akyol, M. A. (2019). Anti-invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds. International Electronic Journal of Geometry, 12(1), 32-42.
AMA Siddiqi MD, Akyol MA. Anti-invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds. Int. Electron. J. Geom. Mart 2019;12(1):32-42.
Chicago Siddiqi, Mohd Danish, ve Mehmet Akif Akyol. “Anti-Invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds”. International Electronic Journal of Geometry 12, sy. 1 (Mart 2019): 32-42.
EndNote Siddiqi MD, Akyol MA (01 Mart 2019) Anti-invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds. International Electronic Journal of Geometry 12 1 32–42.
IEEE M. D. Siddiqi ve M. A. Akyol, “Anti-invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds”, Int. Electron. J. Geom., c. 12, sy. 1, ss. 32–42, 2019.
ISNAD Siddiqi, Mohd Danish - Akyol, Mehmet Akif. “Anti-Invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds”. International Electronic Journal of Geometry 12/1 (Mart 2019), 32-42.
JAMA Siddiqi MD, Akyol MA. Anti-invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds. Int. Electron. J. Geom. 2019;12:32–42.
MLA Siddiqi, Mohd Danish ve Mehmet Akif Akyol. “Anti-Invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds”. International Electronic Journal of Geometry, c. 12, sy. 1, 2019, ss. 32-42.
Vancouver Siddiqi MD, Akyol MA. Anti-invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds. Int. Electron. J. Geom. 2019;12(1):32-4.