Araştırma Makalesi
BibTex RIS Kaynak Göster

A Geometric view of Magnetic Surfaces and Magnetic Curves

Yıl 2019, Cilt: 12 Sayı: 1, 126 - 134, 27.03.2019
https://doi.org/10.36890/iejg.545865

Öz

In the present paper, we approach the magnetic surfaces geometrically. For this aim, we study the
problem of constructing a family of magnetic surfaces from a given magnetic field line. We obtain
a parametric representation for the surfaces family whose members share the same magnetic field
lines and magnetic curves. We investigate the trajectory of charged particles moving related to
these surfaces. Moreover, we give various examples of these surfaces and illustrate their figures.

Kaynakça

  • [1] Barros, M., Romero, A., Magnetic vortices. EPL, 77(2007) 1-5.
  • [2] Barros, M., Cabrerizo, J.L., Fernandez,M., Romero, A., Magnetic vortex filament flows. J. Math. Phys.,48(8) (2007) 082904.
  • [3] Barros, M. General helices and a theorem of Lancret. Proc. Am.Math. Soc.,125, 1503-1509, 1997.
  • [4] Bird, B.R., Stewart, W.E., Lightfoot, E. N., Transport Phenomena. Wiley. ISBN 0-471-07392-X, 1960.
  • [5] Boozer, A.H., Physics of magnetically confined plasmas. Rev. Mod. Phys., DOI:https://doi.org/10.1103/RevModPhys.76.1071, 2005.
  • [6] Bozkurt, Z.,Gök, İ., Yaylı Y., Ekmekci, F.N., A new Approach for Magnetic Curves in Riemannian 3D􀀀Manifolds. J. Math. Phys., 55(2014), 1-12.
  • [7] Cabrerizo, J.L., Magnetic fields in 2D and 3D sphere. J. Nonlinear Math. Phys., 20(3)(2013), 440-4503.
  • [8] Dru¸t-Romaniuc, S.L., Munteanu, M.I., Magnetic curves corresponding to Killing magnetic fields in E3. J. Math. Phys.,52(2011), 113506,
  • [9] Hazeltine, R.D., Meiss, J. D. Plasma Confinement. Dover publications. inc. Mineola, New York, 2003.
  • [10] Pedersen, T.S., Boozer, A.H., Confinement of nonneutral plasmas on magnetic surfaces. Phys. Rev. Lett., 88 (2002), 205002.
  • [11] Wang, G.J., Tang, K., Tai, C.L., Parametric representation of a surface pencil with a common spatial geodesic. Computer-Aided Design, 36(5)(2004), 447-459.
  • [12] Illert, C., Formulation and solution of the classical problem, II Tubular three dimensional surfaces. Nuovo Cimento, 11(1989), 761-780.
Yıl 2019, Cilt: 12 Sayı: 1, 126 - 134, 27.03.2019
https://doi.org/10.36890/iejg.545865

Öz

Kaynakça

  • [1] Barros, M., Romero, A., Magnetic vortices. EPL, 77(2007) 1-5.
  • [2] Barros, M., Cabrerizo, J.L., Fernandez,M., Romero, A., Magnetic vortex filament flows. J. Math. Phys.,48(8) (2007) 082904.
  • [3] Barros, M. General helices and a theorem of Lancret. Proc. Am.Math. Soc.,125, 1503-1509, 1997.
  • [4] Bird, B.R., Stewart, W.E., Lightfoot, E. N., Transport Phenomena. Wiley. ISBN 0-471-07392-X, 1960.
  • [5] Boozer, A.H., Physics of magnetically confined plasmas. Rev. Mod. Phys., DOI:https://doi.org/10.1103/RevModPhys.76.1071, 2005.
  • [6] Bozkurt, Z.,Gök, İ., Yaylı Y., Ekmekci, F.N., A new Approach for Magnetic Curves in Riemannian 3D􀀀Manifolds. J. Math. Phys., 55(2014), 1-12.
  • [7] Cabrerizo, J.L., Magnetic fields in 2D and 3D sphere. J. Nonlinear Math. Phys., 20(3)(2013), 440-4503.
  • [8] Dru¸t-Romaniuc, S.L., Munteanu, M.I., Magnetic curves corresponding to Killing magnetic fields in E3. J. Math. Phys.,52(2011), 113506,
  • [9] Hazeltine, R.D., Meiss, J. D. Plasma Confinement. Dover publications. inc. Mineola, New York, 2003.
  • [10] Pedersen, T.S., Boozer, A.H., Confinement of nonneutral plasmas on magnetic surfaces. Phys. Rev. Lett., 88 (2002), 205002.
  • [11] Wang, G.J., Tang, K., Tai, C.L., Parametric representation of a surface pencil with a common spatial geodesic. Computer-Aided Design, 36(5)(2004), 447-459.
  • [12] Illert, C., Formulation and solution of the classical problem, II Tubular three dimensional surfaces. Nuovo Cimento, 11(1989), 761-780.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Zehra Özdemir

İsmail Gök

F. Nejat Ekmekci

Yayımlanma Tarihi 27 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 1

Kaynak Göster

APA Özdemir, Z., Gök, İ., & Ekmekci, F. N. (2019). A Geometric view of Magnetic Surfaces and Magnetic Curves. International Electronic Journal of Geometry, 12(1), 126-134. https://doi.org/10.36890/iejg.545865
AMA Özdemir Z, Gök İ, Ekmekci FN. A Geometric view of Magnetic Surfaces and Magnetic Curves. Int. Electron. J. Geom. Mart 2019;12(1):126-134. doi:10.36890/iejg.545865
Chicago Özdemir, Zehra, İsmail Gök, ve F. Nejat Ekmekci. “A Geometric View of Magnetic Surfaces and Magnetic Curves”. International Electronic Journal of Geometry 12, sy. 1 (Mart 2019): 126-34. https://doi.org/10.36890/iejg.545865.
EndNote Özdemir Z, Gök İ, Ekmekci FN (01 Mart 2019) A Geometric view of Magnetic Surfaces and Magnetic Curves. International Electronic Journal of Geometry 12 1 126–134.
IEEE Z. Özdemir, İ. Gök, ve F. N. Ekmekci, “A Geometric view of Magnetic Surfaces and Magnetic Curves”, Int. Electron. J. Geom., c. 12, sy. 1, ss. 126–134, 2019, doi: 10.36890/iejg.545865.
ISNAD Özdemir, Zehra vd. “A Geometric View of Magnetic Surfaces and Magnetic Curves”. International Electronic Journal of Geometry 12/1 (Mart 2019), 126-134. https://doi.org/10.36890/iejg.545865.
JAMA Özdemir Z, Gök İ, Ekmekci FN. A Geometric view of Magnetic Surfaces and Magnetic Curves. Int. Electron. J. Geom. 2019;12:126–134.
MLA Özdemir, Zehra vd. “A Geometric View of Magnetic Surfaces and Magnetic Curves”. International Electronic Journal of Geometry, c. 12, sy. 1, 2019, ss. 126-34, doi:10.36890/iejg.545865.
Vancouver Özdemir Z, Gök İ, Ekmekci FN. A Geometric view of Magnetic Surfaces and Magnetic Curves. Int. Electron. J. Geom. 2019;12(1):126-34.