[1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional
Euclidean space. Turkish J. Math. 40 (2016), no.1, 210–223.
[2] Chen, B.-Y., Geometry of Submanifolds. Marcel Dekker, New York, 1973.
[4] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean
space. J. Geom. 74 (2002), 61–77.
[5] Chen, B.-Y., Convolution of Riemannian manifolds and its
applications. Bull. Austral. Math. Soc. 66 (2002), no. 2, 177–191.
[6] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying
plane?. Amer. Math. Monthly 110 (2003), no. 2, 147–152.
[7] Chen, B.-Y., More on convolution of Riemannian manifolds. Beiträge Algebra Geom. 44 (2003),
9–24.
[8] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J.
Math. 29 (2003), no. 2, 281–294
[9] Chen, B.-Y., Pseudo-Riemannian geometry, δ-invariants and
applications. World Scientific, 2011.
[10] Chen, B.-Y., Topics in differential geometry associated with position vector fields on
Euclidean submanifolds. Arab J. Math. Sci. 23 (2017), no. 1 (Special Issue on Geometry and Global
Analysis), doi:10.1016/j.ajmsc.2016.08.001.
[11] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst.
Math. Acad. Sinica 33 (2005), no. 2, 77–90.
[12] Gungor, M. A. and Tosun, M., Some characterizations of quaternionic rectifying curves. Differ. Geom. Dyn. Syst. 13 (2011), 89–100.
[13] S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), no. 3,
209–215.
[14] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying
curves in the Minkowski 3-space. Novi Sad J. Math. 33 (2003), no. 2, 23–32.
[15] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the
Minkowski 3-space. Novi Sad J. Math. 37 (2007), no. 1, 53–64.
[16] Ilarslan, K. and Nesovic, E., Some characterizations of rectifying curves in the Euclidean
space E4. Turkish J. Math. 32 (2008), no. 1, 21–30.
[17] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in
Minkowski space-time. Int. Electron. J. Geom. 7 (2014), no. 1, 26–35.
[18] Lucas, P. and Ortega-Yagues, J. A., Rectifying curves in the three-dimensional sphere. J.
Math. Anal. Appl. 421 (2015), no. 2, 1855–1868.
[19] Ozbey, and Oral, M., A study on rectifying curves in the dual Lorentzian space. Bull. Korean Math. Soc. 46 (2009), no. 5, 967–978.
[20] Yilmaz, B., Gok, I. and Yayli, Y., Extended rectifying curves in Minkowski 3-space. Adv. Appl. Clifford Algebr. 26 (2016), no. 2, 861–872.
[21] Yücesan, A., Ayyildiz, N. and Coken, A. C., On rectifying dual space curves. Rev. Mat. Complut. 20 (2007), no. 2, 497–506.
[1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional
Euclidean space. Turkish J. Math. 40 (2016), no.1, 210–223.
[2] Chen, B.-Y., Geometry of Submanifolds. Marcel Dekker, New York, 1973.
[4] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean
space. J. Geom. 74 (2002), 61–77.
[5] Chen, B.-Y., Convolution of Riemannian manifolds and its
applications. Bull. Austral. Math. Soc. 66 (2002), no. 2, 177–191.
[6] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying
plane?. Amer. Math. Monthly 110 (2003), no. 2, 147–152.
[7] Chen, B.-Y., More on convolution of Riemannian manifolds. Beiträge Algebra Geom. 44 (2003),
9–24.
[8] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J.
Math. 29 (2003), no. 2, 281–294
[9] Chen, B.-Y., Pseudo-Riemannian geometry, δ-invariants and
applications. World Scientific, 2011.
[10] Chen, B.-Y., Topics in differential geometry associated with position vector fields on
Euclidean submanifolds. Arab J. Math. Sci. 23 (2017), no. 1 (Special Issue on Geometry and Global
Analysis), doi:10.1016/j.ajmsc.2016.08.001.
[11] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst.
Math. Acad. Sinica 33 (2005), no. 2, 77–90.
[12] Gungor, M. A. and Tosun, M., Some characterizations of quaternionic rectifying curves. Differ. Geom. Dyn. Syst. 13 (2011), 89–100.
[13] S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), no. 3,
209–215.
[14] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying
curves in the Minkowski 3-space. Novi Sad J. Math. 33 (2003), no. 2, 23–32.
[15] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the
Minkowski 3-space. Novi Sad J. Math. 37 (2007), no. 1, 53–64.
[16] Ilarslan, K. and Nesovic, E., Some characterizations of rectifying curves in the Euclidean
space E4. Turkish J. Math. 32 (2008), no. 1, 21–30.
[17] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in
Minkowski space-time. Int. Electron. J. Geom. 7 (2014), no. 1, 26–35.
[18] Lucas, P. and Ortega-Yagues, J. A., Rectifying curves in the three-dimensional sphere. J.
Math. Anal. Appl. 421 (2015), no. 2, 1855–1868.
[19] Ozbey, and Oral, M., A study on rectifying curves in the dual Lorentzian space. Bull. Korean Math. Soc. 46 (2009), no. 5, 967–978.
[20] Yilmaz, B., Gok, I. and Yayli, Y., Extended rectifying curves in Minkowski 3-space. Adv. Appl. Clifford Algebr. 26 (2016), no. 2, 861–872.
[21] Yücesan, A., Ayyildiz, N. and Coken, A. C., On rectifying dual space curves. Rev. Mat. Complut. 20 (2007), no. 2, 497–506.
Chen, B.-y. (2016). Differential Geometry of Rectifying Submanifolds. International Electronic Journal of Geometry, 9(2), 1-8. https://doi.org/10.36890/iejg.584566
AMA
Chen By. Differential Geometry of Rectifying Submanifolds. Int. Electron. J. Geom. Ekim 2016;9(2):1-8. doi:10.36890/iejg.584566
Chicago
Chen, Bang-yen. “Differential Geometry of Rectifying Submanifolds”. International Electronic Journal of Geometry 9, sy. 2 (Ekim 2016): 1-8. https://doi.org/10.36890/iejg.584566.
EndNote
Chen B-y (01 Ekim 2016) Differential Geometry of Rectifying Submanifolds. International Electronic Journal of Geometry 9 2 1–8.
IEEE
B.-y. Chen, “Differential Geometry of Rectifying Submanifolds”, Int. Electron. J. Geom., c. 9, sy. 2, ss. 1–8, 2016, doi: 10.36890/iejg.584566.
ISNAD
Chen, Bang-yen. “Differential Geometry of Rectifying Submanifolds”. International Electronic Journal of Geometry 9/2 (Ekim 2016), 1-8. https://doi.org/10.36890/iejg.584566.
JAMA
Chen B-y. Differential Geometry of Rectifying Submanifolds. Int. Electron. J. Geom. 2016;9:1–8.
MLA
Chen, Bang-yen. “Differential Geometry of Rectifying Submanifolds”. International Electronic Journal of Geometry, c. 9, sy. 2, 2016, ss. 1-8, doi:10.36890/iejg.584566.
Vancouver
Chen B-y. Differential Geometry of Rectifying Submanifolds. Int. Electron. J. Geom. 2016;9(2):1-8.