Araştırma Makalesi
BibTex RIS Kaynak Göster

CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H g ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g)

Yıl 2015, Cilt: 8 Sayı: 2, 181 - 194, 30.10.2015
https://doi.org/10.36890/iejg.592306

Öz


Kaynakça

  • [1] Abbassi, M. T. K.: Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M, g). Comment. Math. Univ. Carolin. 45, no. 4, 591- 596(2004).
  • [2] Abbassi, M. T. K., Sarih, M.: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 no. 1, 19-47 (2005).
  • [3] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math., 41, 71-92 (2005).
  • [4] Dombrowski, P.: On the geometry of the tangent bundles. J. reine and angew. Math. 210, 73-88 (1962).
  • [5] Gezer, A., On the tangent bundle with deformed Sasaki metric. Int. Electron. J. Geom. 6, no. 2, 19–31, (2013).
  • [6] Gezer, A., Altunbas, M.: Notes on the rescaled Sasaki type metric on the cotangent bundle, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 1, 162–174.
  • [7] Gezer, A., Tarakci, O., Salimov A. A.: On the geometry of tangent bundles with the metric II + III. Ann. Polon. Math. 97, no. 1, 73–85 (2010).
  • [8] Hayden, H. A.:Sub-spaces of a space with torsion. Proc. London Math. Soc. S2-34, 27-50 (1932).
  • [9] Kolar, I., Michor, P. W., Slovak, J.: Natural operations in differential geometry. Springer- Verlang, Berlin, 1993.
  • [10] Kowalski, O.: Curvature of the Induced Riemannian Metric on the Tangent Bundle of a Riemannian Manifold. J. Reine Angew. Math. 250, 124-129 (1971).
  • [11] Kowalski, O., Sekizawa, M.: Natural transformation of Riemannian metrics on manifolds to metrics on tangent bundles-a classification. Bull. Tokyo Gakugei Univ. 40 no. 4, 1-29 (1988).
  • [12] Musso, E., Tricerri, F.: Riemannian Metrics on Tangent Bundles. Ann. Mat. Pura. Appl. 150, no. 4, 1-19 (1988).
  • [13] Oproiu, V., Papaghiuc, N.: An anti-K¨ahlerian Einstein structure on the tangent bundle of a space form. Colloq. Math. 103, no. 1, 41–46 (2005).
  • [14] Oproiu, V., Papaghiuc, N.: Einstein quasi-anti-Hermitian structures on the tangent bundle. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 50, no. 2, 347–360 (2004).
  • [15] Oproiu, V., Papaghiuc, N.: Classes of almost anti-Hermitian structures on the tangent bundle of a Riemannian manifold. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 50, no. 1, 175–190 (2004).
  • [16] Oproiu, V., Papaghiuc, N.: Some classes of almost anti-Hermitian structures on the tangent bundle. Mediterr. J. Math. 1 , no. 3, 269–282 (2004).
  • [17] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
  • [18] Wang, J., Wang, Y.: On the geometry of tangent bundles with the rescaled metric.arXiv:1104.5584v1
  • [19] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York 1973.
  • [20] Zayatuev, B. V.: On geometry of tangent Hermtian surface. Webs and Quasigroups. T.S.U. 139–143 (1995).
  • [21] Zayatuev, B. V.: On some clases of AH-structures on tangent bundles. Proceedings of the International Conference dedicated to A. Z. Petrov [in Russian], pp. 53–54 (2000).
  • [22] Zayatuev, B. V.: On some classes of almost-Hermitian structures on the tangent bundle. Webs and Quasigroups T.S.U. 103–106(2002).
Yıl 2015, Cilt: 8 Sayı: 2, 181 - 194, 30.10.2015
https://doi.org/10.36890/iejg.592306

Öz

Kaynakça

  • [1] Abbassi, M. T. K.: Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M, g). Comment. Math. Univ. Carolin. 45, no. 4, 591- 596(2004).
  • [2] Abbassi, M. T. K., Sarih, M.: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 no. 1, 19-47 (2005).
  • [3] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math., 41, 71-92 (2005).
  • [4] Dombrowski, P.: On the geometry of the tangent bundles. J. reine and angew. Math. 210, 73-88 (1962).
  • [5] Gezer, A., On the tangent bundle with deformed Sasaki metric. Int. Electron. J. Geom. 6, no. 2, 19–31, (2013).
  • [6] Gezer, A., Altunbas, M.: Notes on the rescaled Sasaki type metric on the cotangent bundle, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 1, 162–174.
  • [7] Gezer, A., Tarakci, O., Salimov A. A.: On the geometry of tangent bundles with the metric II + III. Ann. Polon. Math. 97, no. 1, 73–85 (2010).
  • [8] Hayden, H. A.:Sub-spaces of a space with torsion. Proc. London Math. Soc. S2-34, 27-50 (1932).
  • [9] Kolar, I., Michor, P. W., Slovak, J.: Natural operations in differential geometry. Springer- Verlang, Berlin, 1993.
  • [10] Kowalski, O.: Curvature of the Induced Riemannian Metric on the Tangent Bundle of a Riemannian Manifold. J. Reine Angew. Math. 250, 124-129 (1971).
  • [11] Kowalski, O., Sekizawa, M.: Natural transformation of Riemannian metrics on manifolds to metrics on tangent bundles-a classification. Bull. Tokyo Gakugei Univ. 40 no. 4, 1-29 (1988).
  • [12] Musso, E., Tricerri, F.: Riemannian Metrics on Tangent Bundles. Ann. Mat. Pura. Appl. 150, no. 4, 1-19 (1988).
  • [13] Oproiu, V., Papaghiuc, N.: An anti-K¨ahlerian Einstein structure on the tangent bundle of a space form. Colloq. Math. 103, no. 1, 41–46 (2005).
  • [14] Oproiu, V., Papaghiuc, N.: Einstein quasi-anti-Hermitian structures on the tangent bundle. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 50, no. 2, 347–360 (2004).
  • [15] Oproiu, V., Papaghiuc, N.: Classes of almost anti-Hermitian structures on the tangent bundle of a Riemannian manifold. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 50, no. 1, 175–190 (2004).
  • [16] Oproiu, V., Papaghiuc, N.: Some classes of almost anti-Hermitian structures on the tangent bundle. Mediterr. J. Math. 1 , no. 3, 269–282 (2004).
  • [17] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
  • [18] Wang, J., Wang, Y.: On the geometry of tangent bundles with the rescaled metric.arXiv:1104.5584v1
  • [19] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York 1973.
  • [20] Zayatuev, B. V.: On geometry of tangent Hermtian surface. Webs and Quasigroups. T.S.U. 139–143 (1995).
  • [21] Zayatuev, B. V.: On some clases of AH-structures on tangent bundles. Proceedings of the International Conference dedicated to A. Z. Petrov [in Russian], pp. 53–54 (2000).
  • [22] Zayatuev, B. V.: On some classes of almost-Hermitian structures on the tangent bundle. Webs and Quasigroups T.S.U. 103–106(2002).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Aydin Gezer

Lokman Bilen

Cağri Karaman Bu kişi benim

Murat Altunbaş

Yayımlanma Tarihi 30 Ekim 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 8 Sayı: 2

Kaynak Göster

APA Gezer, A., Bilen, L., Karaman, C., Altunbaş, M. (2015). CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H g ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g). International Electronic Journal of Geometry, 8(2), 181-194. https://doi.org/10.36890/iejg.592306
AMA Gezer A, Bilen L, Karaman C, Altunbaş M. CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H g ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g). Int. Electron. J. Geom. Ekim 2015;8(2):181-194. doi:10.36890/iejg.592306
Chicago Gezer, Aydin, Lokman Bilen, Cağri Karaman, ve Murat Altunbaş. “CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H G ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g)”. International Electronic Journal of Geometry 8, sy. 2 (Ekim 2015): 181-94. https://doi.org/10.36890/iejg.592306.
EndNote Gezer A, Bilen L, Karaman C, Altunbaş M (01 Ekim 2015) CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H g ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g). International Electronic Journal of Geometry 8 2 181–194.
IEEE A. Gezer, L. Bilen, C. Karaman, ve M. Altunbaş, “CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H g ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g)”, Int. Electron. J. Geom., c. 8, sy. 2, ss. 181–194, 2015, doi: 10.36890/iejg.592306.
ISNAD Gezer, Aydin vd. “CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H G ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g)”. International Electronic Journal of Geometry 8/2 (Ekim 2015), 181-194. https://doi.org/10.36890/iejg.592306.
JAMA Gezer A, Bilen L, Karaman C, Altunbaş M. CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H g ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g). Int. Electron. J. Geom. 2015;8:181–194.
MLA Gezer, Aydin vd. “CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H G ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g)”. International Electronic Journal of Geometry, c. 8, sy. 2, 2015, ss. 181-94, doi:10.36890/iejg.592306.
Vancouver Gezer A, Bilen L, Karaman C, Altunbaş M. CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF THE FORM Sgf +H g ON THE TANGENT BUNDLE OVER A RIEMANNIAN MANIFOLD (M,g). Int. Electron. J. Geom. 2015;8(2):181-94.