Araştırma Makalesi
BibTex RIS Kaynak Göster

ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS

Yıl 2015, Cilt: 8 Sayı: 1, 14 - 20, 30.04.2015
https://doi.org/10.36890/iejg.592790

Öz


Kaynakça

  • [1] Amari, S.-I., Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Sta- tistics, Springer-Verlag, 1985.
  • [2] Amari, S.-I., and Nagaoka, H., Methods of Information Geometry, AMS Translation of Math. Monographs, Oxford University Press, 2000.
  • [3] Balan, V. Brinzei, N. and S. Lebedev., Geodesics, paths and Jacobi fields for Berwald-Moo´r quartic metrics, Hypercomplex Numbers. Geom. Phys., 2(6), vol. 3, (2006), 113-122.
  • [4] Balan, V. and Brinzei, N., Einstein equations for (h, v)-Berwald-Moo´r relativistic models, Balkan. J. Geom. Appl., 11(2)(2006), 20-26.
  • [5] Balan, V., Spectra of symmetric tensors and m-root Finsler models, Linear Algebra Appl., 436(1) (2012), 152-162.
  • [6] Crampin, M., Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67(2005), 401-409.
  • [7] Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.)., 13(1980), 33-40.
  • [8] Li, B. and Shen, Z., On projectively flat fourth root metrics, Canad. Math. Bull., 55(2012), 138-145.
  • [9] Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J. Math Kyoto Univ., 14(1975), 477-498.
  • [10] Matsumoto, M. and Shimada, H., On Finsler spaces with 1-form metric. II. Berwald-Moo´r’s metric L = (y1y2...yn)1/n, Tensor N. S., 32(1978), 275-278.
  • [11] Shen, Z., Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
  • [12] Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ., 24(1984), 163-188.
  • [13] Shimada, H., On Finsler spaces with metric L =(a_i1 a_i2...a_im y^1i y^2i ...y^mi)(1/m) , Tensor, N.S., 33(1979), 365-372.
  • [14] Tayebi, A. and Najafi, B., On m-th root Finsler metrics, J. Geom. Phys., 61(2011), 1479-1484.
  • [15] Tayebi, A. and Najafi, B., On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I., 349(2011), 691-693.
  • [16] Tayebi, A. Peyghan, E. and Shahbazi, M., On generalized m-th root Finsler metrics, Linear Algebra. Appl., 437(2012), 675-683.
  • [17] Tayebi, A. Tabatabaei Far, T. and Peyghan, E., On Kropina-change of m-th root Finsler metrics, Ukrainian. J. Math, 66(1) (2014), 140-144.
  • [18] Tayebi, A. and Peyghan, E., On Douglas spaces with vanishing E¯-curvature, Inter. Elec. J. Geom. 5(1) (2012), 36-41.
Yıl 2015, Cilt: 8 Sayı: 1, 14 - 20, 30.04.2015
https://doi.org/10.36890/iejg.592790

Öz

Kaynakça

  • [1] Amari, S.-I., Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Sta- tistics, Springer-Verlag, 1985.
  • [2] Amari, S.-I., and Nagaoka, H., Methods of Information Geometry, AMS Translation of Math. Monographs, Oxford University Press, 2000.
  • [3] Balan, V. Brinzei, N. and S. Lebedev., Geodesics, paths and Jacobi fields for Berwald-Moo´r quartic metrics, Hypercomplex Numbers. Geom. Phys., 2(6), vol. 3, (2006), 113-122.
  • [4] Balan, V. and Brinzei, N., Einstein equations for (h, v)-Berwald-Moo´r relativistic models, Balkan. J. Geom. Appl., 11(2)(2006), 20-26.
  • [5] Balan, V., Spectra of symmetric tensors and m-root Finsler models, Linear Algebra Appl., 436(1) (2012), 152-162.
  • [6] Crampin, M., Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67(2005), 401-409.
  • [7] Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.)., 13(1980), 33-40.
  • [8] Li, B. and Shen, Z., On projectively flat fourth root metrics, Canad. Math. Bull., 55(2012), 138-145.
  • [9] Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J. Math Kyoto Univ., 14(1975), 477-498.
  • [10] Matsumoto, M. and Shimada, H., On Finsler spaces with 1-form metric. II. Berwald-Moo´r’s metric L = (y1y2...yn)1/n, Tensor N. S., 32(1978), 275-278.
  • [11] Shen, Z., Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
  • [12] Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ., 24(1984), 163-188.
  • [13] Shimada, H., On Finsler spaces with metric L =(a_i1 a_i2...a_im y^1i y^2i ...y^mi)(1/m) , Tensor, N.S., 33(1979), 365-372.
  • [14] Tayebi, A. and Najafi, B., On m-th root Finsler metrics, J. Geom. Phys., 61(2011), 1479-1484.
  • [15] Tayebi, A. and Najafi, B., On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I., 349(2011), 691-693.
  • [16] Tayebi, A. Peyghan, E. and Shahbazi, M., On generalized m-th root Finsler metrics, Linear Algebra. Appl., 437(2012), 675-683.
  • [17] Tayebi, A. Tabatabaei Far, T. and Peyghan, E., On Kropina-change of m-th root Finsler metrics, Ukrainian. J. Math, 66(1) (2014), 140-144.
  • [18] Tayebi, A. and Peyghan, E., On Douglas spaces with vanishing E¯-curvature, Inter. Elec. J. Geom. 5(1) (2012), 36-41.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

A. Tayebı Bu kişi benim

M. Shahbazi Nıa Bu kişi benim

E. Peyghan

Yayımlanma Tarihi 30 Nisan 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 8 Sayı: 1

Kaynak Göster

APA Tayebı, A., Nıa, M. S., & Peyghan, E. (2015). ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. International Electronic Journal of Geometry, 8(1), 14-20. https://doi.org/10.36890/iejg.592790
AMA Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. Nisan 2015;8(1):14-20. doi:10.36890/iejg.592790
Chicago Tayebı, A., M. Shahbazi Nıa, ve E. Peyghan. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry 8, sy. 1 (Nisan 2015): 14-20. https://doi.org/10.36890/iejg.592790.
EndNote Tayebı A, Nıa MS, Peyghan E (01 Nisan 2015) ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. International Electronic Journal of Geometry 8 1 14–20.
IEEE A. Tayebı, M. S. Nıa, ve E. Peyghan, “ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS”, Int. Electron. J. Geom., c. 8, sy. 1, ss. 14–20, 2015, doi: 10.36890/iejg.592790.
ISNAD Tayebı, A. vd. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry 8/1 (Nisan 2015), 14-20. https://doi.org/10.36890/iejg.592790.
JAMA Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. 2015;8:14–20.
MLA Tayebı, A. vd. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry, c. 8, sy. 1, 2015, ss. 14-20, doi:10.36890/iejg.592790.
Vancouver Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. 2015;8(1):14-20.