[1] Amari, S.-I., Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Sta-
tistics, Springer-Verlag, 1985.
[2] Amari, S.-I., and Nagaoka, H., Methods of Information Geometry, AMS Translation of Math.
Monographs, Oxford University Press, 2000.
[3] Balan, V. Brinzei, N. and S. Lebedev., Geodesics, paths and Jacobi fields for Berwald-Moo´r
quartic metrics, Hypercomplex Numbers. Geom. Phys., 2(6), vol. 3, (2006), 113-122.
[4] Balan, V. and Brinzei, N., Einstein equations for (h, v)-Berwald-Moo´r relativistic models,
Balkan. J. Geom. Appl., 11(2)(2006), 20-26.
[5] Balan, V., Spectra of symmetric tensors and m-root Finsler models, Linear Algebra Appl., 436(1)
(2012), 152-162.
[6] Crampin, M., Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67(2005),
401-409.
[7] Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci.
Kagoshima Univ. (Math. Phys. Chem.)., 13(1980), 33-40.
[8] Li, B. and Shen, Z., On projectively flat fourth root metrics, Canad. Math. Bull., 55(2012),
138-145.
[9] Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J.
Math Kyoto Univ., 14(1975), 477-498.
[10] Matsumoto, M. and Shimada, H., On Finsler spaces with 1-form metric. II. Berwald-Moo´r’s
metric L = (y1y2...yn)1/n, Tensor N. S., 32(1978), 275-278.
[11] Shen, Z., Riemann-Finsler geometry with applications to information geometry, Chin. Ann.
Math. 27(2006), 73-94.
[12] Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ.,
24(1984), 163-188.
[13] Shimada, H., On Finsler spaces with metric L =(a_i1 a_i2...a_im y^1i y^2i ...y^mi)(1/m)
, Tensor, N.S., 33(1979), 365-372.
[14] Tayebi, A. and Najafi, B., On m-th root Finsler metrics, J. Geom. Phys., 61(2011), 1479-1484.
[15] Tayebi, A. and Najafi, B., On m-th root metrics with special curvature properties, C. R.
Acad. Sci. Paris, Ser. I., 349(2011), 691-693.
[16] Tayebi, A. Peyghan, E. and Shahbazi, M., On generalized m-th root Finsler metrics, Linear
Algebra. Appl., 437(2012), 675-683.
[17] Tayebi, A. Tabatabaei Far, T. and Peyghan, E., On Kropina-change of m-th root Finsler metrics,
Ukrainian. J. Math, 66(1) (2014), 140-144.
[18] Tayebi, A. and Peyghan, E., On Douglas spaces with vanishing E¯-curvature, Inter. Elec. J.
Geom. 5(1) (2012), 36-41.
[1] Amari, S.-I., Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Sta-
tistics, Springer-Verlag, 1985.
[2] Amari, S.-I., and Nagaoka, H., Methods of Information Geometry, AMS Translation of Math.
Monographs, Oxford University Press, 2000.
[3] Balan, V. Brinzei, N. and S. Lebedev., Geodesics, paths and Jacobi fields for Berwald-Moo´r
quartic metrics, Hypercomplex Numbers. Geom. Phys., 2(6), vol. 3, (2006), 113-122.
[4] Balan, V. and Brinzei, N., Einstein equations for (h, v)-Berwald-Moo´r relativistic models,
Balkan. J. Geom. Appl., 11(2)(2006), 20-26.
[5] Balan, V., Spectra of symmetric tensors and m-root Finsler models, Linear Algebra Appl., 436(1)
(2012), 152-162.
[6] Crampin, M., Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67(2005),
401-409.
[7] Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci.
Kagoshima Univ. (Math. Phys. Chem.)., 13(1980), 33-40.
[8] Li, B. and Shen, Z., On projectively flat fourth root metrics, Canad. Math. Bull., 55(2012),
138-145.
[9] Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J.
Math Kyoto Univ., 14(1975), 477-498.
[10] Matsumoto, M. and Shimada, H., On Finsler spaces with 1-form metric. II. Berwald-Moo´r’s
metric L = (y1y2...yn)1/n, Tensor N. S., 32(1978), 275-278.
[11] Shen, Z., Riemann-Finsler geometry with applications to information geometry, Chin. Ann.
Math. 27(2006), 73-94.
[12] Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ.,
24(1984), 163-188.
[13] Shimada, H., On Finsler spaces with metric L =(a_i1 a_i2...a_im y^1i y^2i ...y^mi)(1/m)
, Tensor, N.S., 33(1979), 365-372.
[14] Tayebi, A. and Najafi, B., On m-th root Finsler metrics, J. Geom. Phys., 61(2011), 1479-1484.
[15] Tayebi, A. and Najafi, B., On m-th root metrics with special curvature properties, C. R.
Acad. Sci. Paris, Ser. I., 349(2011), 691-693.
[16] Tayebi, A. Peyghan, E. and Shahbazi, M., On generalized m-th root Finsler metrics, Linear
Algebra. Appl., 437(2012), 675-683.
[17] Tayebi, A. Tabatabaei Far, T. and Peyghan, E., On Kropina-change of m-th root Finsler metrics,
Ukrainian. J. Math, 66(1) (2014), 140-144.
[18] Tayebi, A. and Peyghan, E., On Douglas spaces with vanishing E¯-curvature, Inter. Elec. J.
Geom. 5(1) (2012), 36-41.
Tayebı, A., Nıa, M. S., & Peyghan, E. (2015). ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. International Electronic Journal of Geometry, 8(1), 14-20. https://doi.org/10.36890/iejg.592790
AMA
Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. Nisan 2015;8(1):14-20. doi:10.36890/iejg.592790
Chicago
Tayebı, A., M. Shahbazi Nıa, ve E. Peyghan. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry 8, sy. 1 (Nisan 2015): 14-20. https://doi.org/10.36890/iejg.592790.
EndNote
Tayebı A, Nıa MS, Peyghan E (01 Nisan 2015) ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. International Electronic Journal of Geometry 8 1 14–20.
IEEE
A. Tayebı, M. S. Nıa, ve E. Peyghan, “ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS”, Int. Electron. J. Geom., c. 8, sy. 1, ss. 14–20, 2015, doi: 10.36890/iejg.592790.
ISNAD
Tayebı, A. vd. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry 8/1 (Nisan 2015), 14-20. https://doi.org/10.36890/iejg.592790.
JAMA
Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. 2015;8:14–20.
MLA
Tayebı, A. vd. “ON RANDERS CHANGE OF M-TH ROOT FINSLER METRICS”. International Electronic Journal of Geometry, c. 8, sy. 1, 2015, ss. 14-20, doi:10.36890/iejg.592790.
Vancouver
Tayebı A, Nıa MS, Peyghan E. ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS. Int. Electron. J. Geom. 2015;8(1):14-20.