Araştırma Makalesi
BibTex RIS Kaynak Göster

CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES

Yıl 2013, Cilt: 6 Sayı: 2, 1 - 8, 30.10.2013

Öz


Kaynakça

  • [1] Aiyama, R., Lagrangian surfaces in the complex 2-space, in: Proceedings of the Fifth Inter- national Workshop on Differential Geometry (Taegu, 2000), 25–29, Kyungpook Natl. Univ., Taegu, 2001.
  • [2] Aiyama, R., Lagrangian surfaces with circle symmetry in the complex 2-space, Michigan Math. J. 52(2004), no. 3, 491–506.
  • [3] Chen, B.-Y., Geometry of Submanifolds, M. Dekker, New York, 1973.
  • [4] Chen, B.-Y., Some pinching and classification theorems for minimal submanifolds, Arch.Math. 60(1993), no. 6, 568–578.
  • [5] Chen, B.-Y., Some new obstruction to minimal and Lagrangian isometric immersions, Japan. J. Math. 26(2000), no. 1, 105–127.
  • [6] Chen, B.-Y., Lagrangian surfaces of constant curvature in complex Euclidean plane, Tohoku Math J. 56(2004), no. 4, 289–298.
  • [7] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex Euclidean plane, Proc. Edinburgh Math. Soc. 48(2005), no. 2, 337–364.
  • [8] Chen, B.-Y., Maslovian Lagrangian surfaces of constant curvature in complex projective or complex hyperbolic planes, Math. Nachr. 278(2005), no. 11, 1242–1281.
  • [9] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex complex projective planes, J. Geom. Phys. 53(2005), no. 4, 428-460.
  • [10] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex hyperbolic planes, J. Geom. Phys. 55(2005), no. 4, 399-439.
  • [11] Chen, B.-Y., Three additional families of Lagrangian surfaces of constant curvature in com- plex projective plane, J. Geom. Phys. 56(2006), no. 4, 666–669.
  • [12] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex hyperbolic planes, II, Soochow J. Math. 33(2007), no. 1, 127–165.
  • [13] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific Publ., Hackensack, New Jersey, 2011.
  • [14] Chen, B.-Y. and Morvan, J.-M., Deformations of isotropic submanifolds in Kähler manifolds, J. Geom. Phys. 13(1994), no. 1, 79–104.
  • [15] Chen, B.-Y. and Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc. 193(1974), 257–266.
  • [16] Joyce, D., Special Lagrangian m-folds in Cm with symmetries, Duke Math. J. 115(2002), no. 1, 1–51.
  • [17] Reckziegel, H., Horizontal lifts of isometric immersions into the bundle space of a pseudo- Riemannian submersion, in: Global Differential Geometry and Global Analysis (1984). Lec- ture Notes in Math. 1156(1985), 264–279.
  • [18] Weinstein, A., Lectures on symplectic manifolds, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8–12, 1976. Regional Conference Series in Mathematics, No. 29. American Mathematical Society, Providence, R.I.,1977.
Yıl 2013, Cilt: 6 Sayı: 2, 1 - 8, 30.10.2013

Öz

Kaynakça

  • [1] Aiyama, R., Lagrangian surfaces in the complex 2-space, in: Proceedings of the Fifth Inter- national Workshop on Differential Geometry (Taegu, 2000), 25–29, Kyungpook Natl. Univ., Taegu, 2001.
  • [2] Aiyama, R., Lagrangian surfaces with circle symmetry in the complex 2-space, Michigan Math. J. 52(2004), no. 3, 491–506.
  • [3] Chen, B.-Y., Geometry of Submanifolds, M. Dekker, New York, 1973.
  • [4] Chen, B.-Y., Some pinching and classification theorems for minimal submanifolds, Arch.Math. 60(1993), no. 6, 568–578.
  • [5] Chen, B.-Y., Some new obstruction to minimal and Lagrangian isometric immersions, Japan. J. Math. 26(2000), no. 1, 105–127.
  • [6] Chen, B.-Y., Lagrangian surfaces of constant curvature in complex Euclidean plane, Tohoku Math J. 56(2004), no. 4, 289–298.
  • [7] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex Euclidean plane, Proc. Edinburgh Math. Soc. 48(2005), no. 2, 337–364.
  • [8] Chen, B.-Y., Maslovian Lagrangian surfaces of constant curvature in complex projective or complex hyperbolic planes, Math. Nachr. 278(2005), no. 11, 1242–1281.
  • [9] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex complex projective planes, J. Geom. Phys. 53(2005), no. 4, 428-460.
  • [10] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex hyperbolic planes, J. Geom. Phys. 55(2005), no. 4, 399-439.
  • [11] Chen, B.-Y., Three additional families of Lagrangian surfaces of constant curvature in com- plex projective plane, J. Geom. Phys. 56(2006), no. 4, 666–669.
  • [12] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex hyperbolic planes, II, Soochow J. Math. 33(2007), no. 1, 127–165.
  • [13] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific Publ., Hackensack, New Jersey, 2011.
  • [14] Chen, B.-Y. and Morvan, J.-M., Deformations of isotropic submanifolds in Kähler manifolds, J. Geom. Phys. 13(1994), no. 1, 79–104.
  • [15] Chen, B.-Y. and Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc. 193(1974), 257–266.
  • [16] Joyce, D., Special Lagrangian m-folds in Cm with symmetries, Duke Math. J. 115(2002), no. 1, 1–51.
  • [17] Reckziegel, H., Horizontal lifts of isometric immersions into the bundle space of a pseudo- Riemannian submersion, in: Global Differential Geometry and Global Analysis (1984). Lec- ture Notes in Math. 1156(1985), 264–279.
  • [18] Weinstein, A., Lectures on symplectic manifolds, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8–12, 1976. Regional Conference Series in Mathematics, No. 29. American Mathematical Society, Providence, R.I.,1977.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Bang-yen Chen

Yayımlanma Tarihi 30 Ekim 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 6 Sayı: 2

Kaynak Göster

APA Chen, B.-y. (2013). CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES. International Electronic Journal of Geometry, 6(2), 1-8.
AMA Chen By. CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES. Int. Electron. J. Geom. Ekim 2013;6(2):1-8.
Chicago Chen, Bang-yen. “CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES”. International Electronic Journal of Geometry 6, sy. 2 (Ekim 2013): 1-8.
EndNote Chen B-y (01 Ekim 2013) CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES. International Electronic Journal of Geometry 6 2 1–8.
IEEE B.-y. Chen, “CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES”, Int. Electron. J. Geom., c. 6, sy. 2, ss. 1–8, 2013.
ISNAD Chen, Bang-yen. “CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES”. International Electronic Journal of Geometry 6/2 (Ekim 2013), 1-8.
JAMA Chen B-y. CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES. Int. Electron. J. Geom. 2013;6:1–8.
MLA Chen, Bang-yen. “CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES”. International Electronic Journal of Geometry, c. 6, sy. 2, 2013, ss. 1-8.
Vancouver Chen B-y. CLASSIFICATION OF SPHERICAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES. Int. Electron. J. Geom. 2013;6(2):1-8.