[1] Abbassi, M. T. K., Note on the classification theorems of g-natural metrics on the tangent
bundle of a Riemannian manifold (M, g), Comment. Math. Univ. Carolin., 45 (2004), no. 4, 591-596.
[2] Abbassi, M. T. K., Sarih, M., On some hereditary properties of Riemannian g-natural metrics on
tangent bundles of Riemannian manifolds, Differential Geom. Appl., 22 (2005), no. 1, 19- 47.
[3] Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds,
Arch. Math., 41 (2005), 71-92.
[4] Binh, T. Q., Tamassy, L., On recurrence or pseudo-symmetry of the Sasakian metric on the
tangent bundle of a Riemannian manifold, Indian J. Pure Appl. Math., 35 (2004), no. 4, 555–560.
[5] Cartan, E., Sur une classe remarquable d’espaces de Riemannian, Bull. Soc. Math. France, 54
(1926), 214–264.
[6] Chaki, M. C., On pseudo-symmetric manifolds, An. Sti. Ale Univ., “AL. I. CUZA” Din Iasi 33
(1987), 53–58.
[7] Chaki, M. C., On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen, 45 (1994),
305–312.
[8] Cruceanu, V., Fortuny, P., Gadea, P. M., A survey on paracomplex Geometry, Rocky Moun- tain J.
Math., 26 (1995), 83-115.
[9] Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A, 44 (1992), no. 1, 1–34.
[10] Dombrowski, P., On the geometry of the tangent bundles, J. Reine and Angew. Math., 210
(1962), 73-88.
[11] Fujimoto, A., Theory of G-structures, Publ. Study Group of Geometry, 1, Tokyo Univ., Tokyo,
1972.
[12] Gezer, A., Altunbas, M., Some notes concerning Riemannian metrics of Cheeger Gromoll type, J.
Math. Anal. Appl., 396 (2012), no. 1, 119–132.
[13] Gezer, A., Altunbas, M., Notes on the rescaled Sasaki type metric on the cotangent bundle,
Acta Math. Sci. Ser. B Engl. Ed. to appear.
[14] Gudmundsson, S., Kappos, E., On the Geometry of the Tangent Bundles, Expo. Math., 20 (2002),
1-41.
[15] de Leon, M., Rodrigues, P. R., Methods of Differential Geometry in Analytical Mechanics,
North-Holland Mathematics Studies, 1989.
[16] Munteanu, M. I., Some aspects on the geometry of the tangent bundles and tangent sphere
bundles of a Riemannian manifold, Mediterr. J. Math., 5 (2008), no.1, 43-59.
[17] Musso, E., Tricerri, F., Riemannian Metrics on Tangent Bundles, Ann. Mat. Pura. Appl., 150
(1988), no. 4, 1-19.
[18] Oproiu, V., Some new geometric structures on the tangent bundle, Publ. Math. Debrecen, 55
(1999), 261-281.
[19] Oproiu, V., A locally symmetric Kaehler Einstein structure on the tangent bundle of a space
form, Beitr¨age Algebra Geom., 40 (1999), no.2, 363-372.
[20] Oproiu, V., A K¨ahler Einstein structure on the tangent bundle of a space form, Int. J. Math.
Math. Sci., 25 (2001), no. 3, 183–195.
[21] Oproiu, V., Papaghiuc, N., Some classes of almost anti-Hermitian structures on the tangent
bundle, Mediterr. J. Math., 1 (2004), no. 3, 269–282.
[22] Salimov, A. A., Iscan, M., Etayo, F., Paraholomorphic B-manifold and its properties, Topol-
ogy Appl., 154 (2007), no. 4, 925-933.
[23] Salimov, A., Gezer, A., Iscan, M., On para-Ka¨hler-Norden structures on the tangent bundles,
Ann. Polon. Math. 103 (2012), no. 3, 247–261.
[24] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku
Math. J., 10 (1958) 338-358.
[25] Tachibana, S., Analytic tensor and its generalization, Tohoku Math. J., 12 (1960), no.2,
208-221.
[26] Tamassy, L., Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian
manifolds. Coll. Math. Soc. J. Bolyai, 56 (1989), 663–670.
[27] Wang, J., Wang, Y., On the geometry of tangent bundles with the rescaled metric,
iv:1104.5584v1
[28] Walker, A. G., On Ruses spaces of recurrent curvature, Proc. London Math. Soc., 52 (1950),
36–64.
[29] Yano, K., Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep.,
20 (1968), 414-436.
[30] Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York 1973.
[31] Zayatuev, B. V., On geometry of tangent Hermtian surface, Webs and Quasigroups. T.S.U.
(1995), 139–143.
[32] Zayatuev, B. V., On some clases of AH-structures on tangent bundles, Proceedings of the
International Conference dedicated to A. Z. Petrov [in Russian], 2000, pp. 53–54.
[33] Zayatuev, B. V., On some classes of almost-Hermitian structures on the tangent bundle,
Webs and Quasigroups. T.S.U. (2002), 103–106.
[1] Abbassi, M. T. K., Note on the classification theorems of g-natural metrics on the tangent
bundle of a Riemannian manifold (M, g), Comment. Math. Univ. Carolin., 45 (2004), no. 4, 591-596.
[2] Abbassi, M. T. K., Sarih, M., On some hereditary properties of Riemannian g-natural metrics on
tangent bundles of Riemannian manifolds, Differential Geom. Appl., 22 (2005), no. 1, 19- 47.
[3] Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds,
Arch. Math., 41 (2005), 71-92.
[4] Binh, T. Q., Tamassy, L., On recurrence or pseudo-symmetry of the Sasakian metric on the
tangent bundle of a Riemannian manifold, Indian J. Pure Appl. Math., 35 (2004), no. 4, 555–560.
[5] Cartan, E., Sur une classe remarquable d’espaces de Riemannian, Bull. Soc. Math. France, 54
(1926), 214–264.
[6] Chaki, M. C., On pseudo-symmetric manifolds, An. Sti. Ale Univ., “AL. I. CUZA” Din Iasi 33
(1987), 53–58.
[7] Chaki, M. C., On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen, 45 (1994),
305–312.
[8] Cruceanu, V., Fortuny, P., Gadea, P. M., A survey on paracomplex Geometry, Rocky Moun- tain J.
Math., 26 (1995), 83-115.
[9] Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A, 44 (1992), no. 1, 1–34.
[10] Dombrowski, P., On the geometry of the tangent bundles, J. Reine and Angew. Math., 210
(1962), 73-88.
[11] Fujimoto, A., Theory of G-structures, Publ. Study Group of Geometry, 1, Tokyo Univ., Tokyo,
1972.
[12] Gezer, A., Altunbas, M., Some notes concerning Riemannian metrics of Cheeger Gromoll type, J.
Math. Anal. Appl., 396 (2012), no. 1, 119–132.
[13] Gezer, A., Altunbas, M., Notes on the rescaled Sasaki type metric on the cotangent bundle,
Acta Math. Sci. Ser. B Engl. Ed. to appear.
[14] Gudmundsson, S., Kappos, E., On the Geometry of the Tangent Bundles, Expo. Math., 20 (2002),
1-41.
[15] de Leon, M., Rodrigues, P. R., Methods of Differential Geometry in Analytical Mechanics,
North-Holland Mathematics Studies, 1989.
[16] Munteanu, M. I., Some aspects on the geometry of the tangent bundles and tangent sphere
bundles of a Riemannian manifold, Mediterr. J. Math., 5 (2008), no.1, 43-59.
[17] Musso, E., Tricerri, F., Riemannian Metrics on Tangent Bundles, Ann. Mat. Pura. Appl., 150
(1988), no. 4, 1-19.
[18] Oproiu, V., Some new geometric structures on the tangent bundle, Publ. Math. Debrecen, 55
(1999), 261-281.
[19] Oproiu, V., A locally symmetric Kaehler Einstein structure on the tangent bundle of a space
form, Beitr¨age Algebra Geom., 40 (1999), no.2, 363-372.
[20] Oproiu, V., A K¨ahler Einstein structure on the tangent bundle of a space form, Int. J. Math.
Math. Sci., 25 (2001), no. 3, 183–195.
[21] Oproiu, V., Papaghiuc, N., Some classes of almost anti-Hermitian structures on the tangent
bundle, Mediterr. J. Math., 1 (2004), no. 3, 269–282.
[22] Salimov, A. A., Iscan, M., Etayo, F., Paraholomorphic B-manifold and its properties, Topol-
ogy Appl., 154 (2007), no. 4, 925-933.
[23] Salimov, A., Gezer, A., Iscan, M., On para-Ka¨hler-Norden structures on the tangent bundles,
Ann. Polon. Math. 103 (2012), no. 3, 247–261.
[24] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku
Math. J., 10 (1958) 338-358.
[25] Tachibana, S., Analytic tensor and its generalization, Tohoku Math. J., 12 (1960), no.2,
208-221.
[26] Tamassy, L., Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian
manifolds. Coll. Math. Soc. J. Bolyai, 56 (1989), 663–670.
[27] Wang, J., Wang, Y., On the geometry of tangent bundles with the rescaled metric,
iv:1104.5584v1
[28] Walker, A. G., On Ruses spaces of recurrent curvature, Proc. London Math. Soc., 52 (1950),
36–64.
[29] Yano, K., Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep.,
20 (1968), 414-436.
[30] Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York 1973.
[31] Zayatuev, B. V., On geometry of tangent Hermtian surface, Webs and Quasigroups. T.S.U.
(1995), 139–143.
[32] Zayatuev, B. V., On some clases of AH-structures on tangent bundles, Proceedings of the
International Conference dedicated to A. Z. Petrov [in Russian], 2000, pp. 53–54.
[33] Zayatuev, B. V., On some classes of almost-Hermitian structures on the tangent bundle,
Webs and Quasigroups. T.S.U. (2002), 103–106.