Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2013, Cilt: 6 Sayı: 2, 57 - 62, 30.10.2013

Öz

Kaynakça

  • [1] Alfonso, C. and Verónica M., The curvature tensor of almost cosymplectic and almost Ken- motsu (κ, µ, ν)-spaces. arXiv:1201.5565v2.
  • [2] Blair D., Kouforgiorgos T. and Papantoniou B. J., Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.
  • [3] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203. Birkhâuser Boston, Inc., Boston, MA, 2002.
  • [4] Blair D. E. and Goldberg S. I., Topology of almost contact manifolds, J. Differential geometry, 1(1967), 347-354.
  • [5] Blair D. E., The theory of quasi-Sasakian structures, J. Diff. Geometry, 1 (1967), 331-345.
  • [6] Blair D. E., Goldberg S. I., Topology of almost contact manifolds, J. Diff. Geometry, 1 (1967),347-354.
  • [7] Boeckx, E., A full classification of contact metric (κ, µ)-spaces, Illinois J. Math., 44 (1) (2000), 212-219.
  • [8] Chinea D., De Leon M., Marrero J. C., Topology of cosymplectic manifolds, J. Math. Pures Appl., 72 (1993), 567-591.
  • [9] Chinea D., De Leon M., Marrero J. C., Coeffective cohomology on almost cosymplectic manifolds, Bull. Sci. Math., 119 (1995), 3-20.
  • [10] Chinea D. and Gonzalez C., An example of almost cosymplectic homogeneous manifold, in: Lect. Notes Math. Vol. 1209, Springer-Verlag, Berlin-Heildelberg-New York, (1986), 133-142.
  • [11] Cordero L. A., Fernandez M. and De Leon M., Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures, Atti Sem. Mat. Univ. Modena, 34 (1985-86), 43-54.
  • [12] Endo H., On Ricci curvatures of almost cosymplectic manifolds, An. S¸tiint. Univ. ”Al. I. Cuza” Ia¸si, Mat., 40 (1994), 75-83.
  • [13] Fujimoto A. and Muto H., On cosymplectic manifolds, Tensor N. S., 28 (1974), 43-52.
  • [14] Goldberg S.I. and Yano K. Integrability of almost cosymplectic structures, Pasific J. Math., 31 (1969), 373-382.
  • [15] Kim, T. W. and Pak, H. K , Canonical foliations of certain classes of almost contact metric structures, Acta Math. 21 (2005), no. 4, 841–846.
  • [16] Kirichenko V. F., Almost cosymplectic manifolds satisfying the axiom of Φ-holomorphic planes (in Russian), Dokl. Akad. Nauk SSSR, 273 (1983), 280-284.
  • [17] Koufogiorgos, Th.and Tsichlias, C., On the existence of a new class of contact metric mani- folds, Canad. Math. Bull., 43 (2000), 440-447.
  • [18] Libermann M. P., Sur les automorphismes infinitesimaux des structures symplectiques et des structures de contact, in: Colloque de Geometrie Differentielle Globale (Bruxelles, 1958), Centre Belge de Recherche Mathematiques Louvain, (1959), 37-59.
  • [19] Lichnerowicz A., Theoremes de reductivite sur des algebres d’automorphismes, Rend. Mat., 22 (1963), 197-244.
  • [20] Mikes, J., On Sasaki spaces and equidistant K¨ahler space, Sovlet. Math Dokl,Vo .34 (1987), No. 3, 428-431.
  • [21] Mikes, J., Equidistant K¨ahler spaces, Mathematical notes of the Academy of Sciences of the USSR, October 1985, Vol. 38, No. 4, 855-858.
  • [22] Olszak Z., Locally conformal almost cosymplectic manifolds, Coll. Math., 57 (1989), 73–87.
  • [23] Olszak Z., On almost cosymplectic manifolds, Kodai Math. J., 4 (1981), 239-250.
  • [24] Olszak Z., Almost cosymplectic manifolds with K¨ahlerian leaves, Tensor N. S., 46 (1987), 117-124.
  • [25] Özgür C., Contact metric manifold with cyclic -parallel Ricci tensor, Balkan Society of Ge- ometers, Geometry Balkan Press., 4 (2002), no.1, 21-25.
  • [26] Öztürk H., Aktan N. and Murathan C., Almost α-cosymplectic (κ, µ, ν)-spaces, arXiv:1007.0527v1.
  • [27] Lee, Sung-Baik, Kim, Nam-Gil, Hand, Seung-Gook and Ahn, Seong-Soo, Sasakian manifolds with cyclic-parallel Ricci tensor, Bull. Korean Math. Soc., 33 (1996), no. 2, 243-251.

ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR

Yıl 2013, Cilt: 6 Sayı: 2, 57 - 62, 30.10.2013

Öz



Kaynakça

  • [1] Alfonso, C. and Verónica M., The curvature tensor of almost cosymplectic and almost Ken- motsu (κ, µ, ν)-spaces. arXiv:1201.5565v2.
  • [2] Blair D., Kouforgiorgos T. and Papantoniou B. J., Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.
  • [3] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203. Birkhâuser Boston, Inc., Boston, MA, 2002.
  • [4] Blair D. E. and Goldberg S. I., Topology of almost contact manifolds, J. Differential geometry, 1(1967), 347-354.
  • [5] Blair D. E., The theory of quasi-Sasakian structures, J. Diff. Geometry, 1 (1967), 331-345.
  • [6] Blair D. E., Goldberg S. I., Topology of almost contact manifolds, J. Diff. Geometry, 1 (1967),347-354.
  • [7] Boeckx, E., A full classification of contact metric (κ, µ)-spaces, Illinois J. Math., 44 (1) (2000), 212-219.
  • [8] Chinea D., De Leon M., Marrero J. C., Topology of cosymplectic manifolds, J. Math. Pures Appl., 72 (1993), 567-591.
  • [9] Chinea D., De Leon M., Marrero J. C., Coeffective cohomology on almost cosymplectic manifolds, Bull. Sci. Math., 119 (1995), 3-20.
  • [10] Chinea D. and Gonzalez C., An example of almost cosymplectic homogeneous manifold, in: Lect. Notes Math. Vol. 1209, Springer-Verlag, Berlin-Heildelberg-New York, (1986), 133-142.
  • [11] Cordero L. A., Fernandez M. and De Leon M., Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures, Atti Sem. Mat. Univ. Modena, 34 (1985-86), 43-54.
  • [12] Endo H., On Ricci curvatures of almost cosymplectic manifolds, An. S¸tiint. Univ. ”Al. I. Cuza” Ia¸si, Mat., 40 (1994), 75-83.
  • [13] Fujimoto A. and Muto H., On cosymplectic manifolds, Tensor N. S., 28 (1974), 43-52.
  • [14] Goldberg S.I. and Yano K. Integrability of almost cosymplectic structures, Pasific J. Math., 31 (1969), 373-382.
  • [15] Kim, T. W. and Pak, H. K , Canonical foliations of certain classes of almost contact metric structures, Acta Math. 21 (2005), no. 4, 841–846.
  • [16] Kirichenko V. F., Almost cosymplectic manifolds satisfying the axiom of Φ-holomorphic planes (in Russian), Dokl. Akad. Nauk SSSR, 273 (1983), 280-284.
  • [17] Koufogiorgos, Th.and Tsichlias, C., On the existence of a new class of contact metric mani- folds, Canad. Math. Bull., 43 (2000), 440-447.
  • [18] Libermann M. P., Sur les automorphismes infinitesimaux des structures symplectiques et des structures de contact, in: Colloque de Geometrie Differentielle Globale (Bruxelles, 1958), Centre Belge de Recherche Mathematiques Louvain, (1959), 37-59.
  • [19] Lichnerowicz A., Theoremes de reductivite sur des algebres d’automorphismes, Rend. Mat., 22 (1963), 197-244.
  • [20] Mikes, J., On Sasaki spaces and equidistant K¨ahler space, Sovlet. Math Dokl,Vo .34 (1987), No. 3, 428-431.
  • [21] Mikes, J., Equidistant K¨ahler spaces, Mathematical notes of the Academy of Sciences of the USSR, October 1985, Vol. 38, No. 4, 855-858.
  • [22] Olszak Z., Locally conformal almost cosymplectic manifolds, Coll. Math., 57 (1989), 73–87.
  • [23] Olszak Z., On almost cosymplectic manifolds, Kodai Math. J., 4 (1981), 239-250.
  • [24] Olszak Z., Almost cosymplectic manifolds with K¨ahlerian leaves, Tensor N. S., 46 (1987), 117-124.
  • [25] Özgür C., Contact metric manifold with cyclic -parallel Ricci tensor, Balkan Society of Ge- ometers, Geometry Balkan Press., 4 (2002), no.1, 21-25.
  • [26] Öztürk H., Aktan N. and Murathan C., Almost α-cosymplectic (κ, µ, ν)-spaces, arXiv:1007.0527v1.
  • [27] Lee, Sung-Baik, Kim, Nam-Gil, Hand, Seung-Gook and Ahn, Seong-Soo, Sasakian manifolds with cyclic-parallel Ricci tensor, Bull. Korean Math. Soc., 33 (1996), no. 2, 243-251.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Nesip Aktan

Yavuz Selim Balkan

Yayımlanma Tarihi 30 Ekim 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 6 Sayı: 2

Kaynak Göster

APA Aktan, N., & Balkan, Y. S. (2013). ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. International Electronic Journal of Geometry, 6(2), 57-62.
AMA Aktan N, Balkan YS. ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. Int. Electron. J. Geom. Ekim 2013;6(2):57-62.
Chicago Aktan, Nesip, ve Yavuz Selim Balkan. “ALMOST COSYMPLECTIC (κ, )-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR”. International Electronic Journal of Geometry 6, sy. 2 (Ekim 2013): 57-62.
EndNote Aktan N, Balkan YS (01 Ekim 2013) ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. International Electronic Journal of Geometry 6 2 57–62.
IEEE N. Aktan ve Y. S. Balkan, “ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR”, Int. Electron. J. Geom., c. 6, sy. 2, ss. 57–62, 2013.
ISNAD Aktan, Nesip - Balkan, Yavuz Selim. “ALMOST COSYMPLECTIC (κ, )-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR”. International Electronic Journal of Geometry 6/2 (Ekim 2013), 57-62.
JAMA Aktan N, Balkan YS. ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. Int. Electron. J. Geom. 2013;6:57–62.
MLA Aktan, Nesip ve Yavuz Selim Balkan. “ALMOST COSYMPLECTIC (κ, )-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR”. International Electronic Journal of Geometry, c. 6, sy. 2, 2013, ss. 57-62.
Vancouver Aktan N, Balkan YS. ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. Int. Electron. J. Geom. 2013;6(2):57-62.