[1] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s). J. Differential Geom.
4 (2)(1970), 155-167.
[2] Cabrerizo, J.L., Fernandez, L.M. and Fernandez, M., The curvature tensor field
on f −manifold with complemented frames. An. Univ. ’Al.I.Cuza’, Ia.si, Matematica 36 (1990),
151-161.
[3] Chinea, D., Almost contact metric submersions. Rend. Circ. Mat. Palermo, II Ser. 34 (1985),
89-104.
[4] Falcitelli, M., Ianus., S. and Pastore, A.M., Riemannian submersions and related topics. World
Scientific, 2004.
[5] Goldberg, S.I. and Yano, K., On normal globally framed f −manifolds. Toˆhoku Math. Journal
22 (1970), 362-370.
[6] Goldberg, S.I. and Yano, K., Globally framed f −manifolds. Illinois Math. Journal 22 (1971),
456-474.
[7] Gündüzalp, Y. and S. ahin, B., Paracontact semi-Riemannian submersions. Turkish J.Math.
37 (2013), 114-128.
[8] Gündüzalp, Y. and S. ahin, B., Para-contact para-complex semi-Riemannian
submersions.Bull. Malays. Math. Sci. Soc. In Press.
[9] Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech.
16 (1967), 715-737.
[10] Ianus., S., Mazzocco, R. and Vilcu, G.V., Riemannian submersions from quaternionic mani-
folds. Acta Appl. Math. 104 (2008), 83-89.
[11] Leo, G.D. and Lotta, A., On the structure and symmetry properties of almost S−manifolds.
Geom. Dedicata 110 (2005), 191-211.
[12] O‘Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459
469.
[13] Şahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent.
Eur. J. Math. 8 (2010), 437-447.
[14] Terlizzi, L.D., On invariant submanifolds of C−and S−manifolds. Acta Math. Hungar. 85
(1999), 229-239.
[15] Terlizzi, L.D., Scalar and ϕ−sectional curvature of a certain type of metric f−structures.
Mediterr. j. math. 3 (2006),533-547.
[17] Vaisman, I., A survey of generalized Hopf manifolds. Rend. Sem. Math., Univ. Politec.
Torino (1984), special issue.
[18] Vanzura, J., Almost s-contact structures. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26
(1972), 97-115.
[19] Vilcu, G.V., 3-submersions from QR-hypersurfaces of quaternionic Ka¨hler manifolds. Ann.
Polon. Math. 98 (2010), 301-309.
[20] Watson, B., Almost Hermitian submersions. J. Differential Geom. 11 (1976), 147-165. [21]
Yano, K. and Kon, M., Structures on manifolds. World Scientific, 1984.
[22] Yano, K., On a structure defined by a tensor field f satisfying f 3 + f = 0. Tensor 14
63),99-109.
[1] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s). J. Differential Geom.
4 (2)(1970), 155-167.
[2] Cabrerizo, J.L., Fernandez, L.M. and Fernandez, M., The curvature tensor field
on f −manifold with complemented frames. An. Univ. ’Al.I.Cuza’, Ia.si, Matematica 36 (1990),
151-161.
[3] Chinea, D., Almost contact metric submersions. Rend. Circ. Mat. Palermo, II Ser. 34 (1985),
89-104.
[4] Falcitelli, M., Ianus., S. and Pastore, A.M., Riemannian submersions and related topics. World
Scientific, 2004.
[5] Goldberg, S.I. and Yano, K., On normal globally framed f −manifolds. Toˆhoku Math. Journal
22 (1970), 362-370.
[6] Goldberg, S.I. and Yano, K., Globally framed f −manifolds. Illinois Math. Journal 22 (1971),
456-474.
[7] Gündüzalp, Y. and S. ahin, B., Paracontact semi-Riemannian submersions. Turkish J.Math.
37 (2013), 114-128.
[8] Gündüzalp, Y. and S. ahin, B., Para-contact para-complex semi-Riemannian
submersions.Bull. Malays. Math. Sci. Soc. In Press.
[9] Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech.
16 (1967), 715-737.
[10] Ianus., S., Mazzocco, R. and Vilcu, G.V., Riemannian submersions from quaternionic mani-
folds. Acta Appl. Math. 104 (2008), 83-89.
[11] Leo, G.D. and Lotta, A., On the structure and symmetry properties of almost S−manifolds.
Geom. Dedicata 110 (2005), 191-211.
[12] O‘Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459
469.
[13] Şahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent.
Eur. J. Math. 8 (2010), 437-447.
[14] Terlizzi, L.D., On invariant submanifolds of C−and S−manifolds. Acta Math. Hungar. 85
(1999), 229-239.
[15] Terlizzi, L.D., Scalar and ϕ−sectional curvature of a certain type of metric f−structures.
Mediterr. j. math. 3 (2006),533-547.
[17] Vaisman, I., A survey of generalized Hopf manifolds. Rend. Sem. Math., Univ. Politec.
Torino (1984), special issue.
[18] Vanzura, J., Almost s-contact structures. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26
(1972), 97-115.
[19] Vilcu, G.V., 3-submersions from QR-hypersurfaces of quaternionic Ka¨hler manifolds. Ann.
Polon. Math. 98 (2010), 301-309.
[20] Watson, B., Almost Hermitian submersions. J. Differential Geom. 11 (1976), 147-165. [21]
Yano, K. and Kon, M., Structures on manifolds. World Scientific, 1984.
[22] Yano, K., On a structure defined by a tensor field f satisfying f 3 + f = 0. Tensor 14
63),99-109.