Araştırma Makalesi
BibTex RIS Kaynak Göster

ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES

Yıl 2012, Cilt: 5 Sayı: 2, 95 - 167, 30.10.2012

Öz



 

Kaynakça

  • [1] J.K. Beem and P.E. Ehrlich, Global Lorentzian geometry, Marcel Dekker, New York, 1981.
  • [2] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathemat- ics, Springer-Verlag, Berlin, 509 (1976), 146.
  • [3] D.E. Blair, J.-S. Kim and M.M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42 (2005), no. 5, 883–892.
  • [4] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053– 1065.
  • [5] R. Deszcz, On conformally flat Riemannian manifolds satisfying certain curvature condi- tions, Tensor (N.S.) 49 (1990), 134-145.
  • [6] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudosym- metry curvature conditions, Geometry and Topology of Submanifolds, II, Avignon, May, 1988, World Sci. Publ., Singapore 1990, 134-145.
  • [7] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudosymmetry curvature conditions, Colloq. Math. 62 (1991), 103-120.
  • [8] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311–322.
  • [9] R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89–92.
  • [10] R. Deszcz, L. Verstraelen and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), no. 2, 167–179.
  • [11] K.L. Duggal, Space time manifolds and contact structures, Internat. J. Math. Math. Sci. 13(1990), 545-554.
  • [12] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949. [13] Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73–80.
  • [14] S. Hong, C. Özgür and M.M. Tripathi, On some classes of Kenmotsu manifold, Kuwait J. Sci. Engrg. 33 (2006), no. 2, 19–32.
  • [15] K. Kenmotsu, A class of almost contact Riemannian manifold, Tˆohoku Math. J. (2) 24 (1972), 93–103.
  • [16] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci. 12 (1989), no. 2, 151–156.
  • [17] B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, London, 1983.
  • [18] C. On a class of para-Sasakian manifold, Turk. J. Math. 29 (2005), 249–257.
  • [19] C. Özgür, On Kenmotsu manifolds satisfying certain pseudosymmetry conditions, World Applied Sciences Journal 1 (2006), no. 2, 144–149.
  • [20] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance, Yoko- hama Math. J. 18 (1970), 105–108.
  • [21] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance II, Yokohama Math. J. 19 (1971), no. 2, 97–103.
  • [22] G.P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci. 5 (1982), no. 1, 133–139.
  • [23] B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc. 94 (2002), no. 3, 163–166.
  • [24] M. Prvanovi´c, On SP-Sasakian manifold satisfying some curvature conditions, SUT J. Math. 26 (1990), 201–220.
  • [25] S. Sasaki, On differentiate manifolds with certain structures which are closely related to almost contact structure I, Tˆohoku Math. J. 12 (1960), 459-476.
  • [26] I. Satö, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), no. 3, 219-224.
  • [27] T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tˆohoku Math J. 21 (1969), 271–290.
  • [28] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tˆohoku Math J. 40 (1988), 441–448.
  • [29] M.M. Tripathi, E. Kılıc¸, S. Yu¨ksel Perkta¸s and S. Kele¸s, Indefinite almost paracontact metric manifolds, Internat. J. Math. Math. Sci. 2010 (2010), 19 pp. Art. ID 846195.
  • [30] M.M. Tripathi and P. Gupta, T -curvature tensor on a semi-Riemannian manifolds, Jour. Adv. Math. Stud. 4 (2011), no. 1, 117–129.
  • [31] M.M. Tripathi and P. Gupta, On (N (k), ξ)-semi-Riemannian manifolds: Semisymmetry, Preprint.
  • [32] K. Yano, Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im- perial Univ. Proc. 16 (1940), 195–200.
  • [33] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
  • [34] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom. 2 (1968), 161–184.
Yıl 2012, Cilt: 5 Sayı: 2, 95 - 167, 30.10.2012

Öz

Kaynakça

  • [1] J.K. Beem and P.E. Ehrlich, Global Lorentzian geometry, Marcel Dekker, New York, 1981.
  • [2] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathemat- ics, Springer-Verlag, Berlin, 509 (1976), 146.
  • [3] D.E. Blair, J.-S. Kim and M.M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42 (2005), no. 5, 883–892.
  • [4] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053– 1065.
  • [5] R. Deszcz, On conformally flat Riemannian manifolds satisfying certain curvature condi- tions, Tensor (N.S.) 49 (1990), 134-145.
  • [6] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudosym- metry curvature conditions, Geometry and Topology of Submanifolds, II, Avignon, May, 1988, World Sci. Publ., Singapore 1990, 134-145.
  • [7] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudosymmetry curvature conditions, Colloq. Math. 62 (1991), 103-120.
  • [8] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311–322.
  • [9] R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89–92.
  • [10] R. Deszcz, L. Verstraelen and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), no. 2, 167–179.
  • [11] K.L. Duggal, Space time manifolds and contact structures, Internat. J. Math. Math. Sci. 13(1990), 545-554.
  • [12] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949. [13] Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73–80.
  • [14] S. Hong, C. Özgür and M.M. Tripathi, On some classes of Kenmotsu manifold, Kuwait J. Sci. Engrg. 33 (2006), no. 2, 19–32.
  • [15] K. Kenmotsu, A class of almost contact Riemannian manifold, Tˆohoku Math. J. (2) 24 (1972), 93–103.
  • [16] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci. 12 (1989), no. 2, 151–156.
  • [17] B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, London, 1983.
  • [18] C. On a class of para-Sasakian manifold, Turk. J. Math. 29 (2005), 249–257.
  • [19] C. Özgür, On Kenmotsu manifolds satisfying certain pseudosymmetry conditions, World Applied Sciences Journal 1 (2006), no. 2, 144–149.
  • [20] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance, Yoko- hama Math. J. 18 (1970), 105–108.
  • [21] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance II, Yokohama Math. J. 19 (1971), no. 2, 97–103.
  • [22] G.P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci. 5 (1982), no. 1, 133–139.
  • [23] B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc. 94 (2002), no. 3, 163–166.
  • [24] M. Prvanovi´c, On SP-Sasakian manifold satisfying some curvature conditions, SUT J. Math. 26 (1990), 201–220.
  • [25] S. Sasaki, On differentiate manifolds with certain structures which are closely related to almost contact structure I, Tˆohoku Math. J. 12 (1960), 459-476.
  • [26] I. Satö, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), no. 3, 219-224.
  • [27] T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tˆohoku Math J. 21 (1969), 271–290.
  • [28] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tˆohoku Math J. 40 (1988), 441–448.
  • [29] M.M. Tripathi, E. Kılıc¸, S. Yu¨ksel Perkta¸s and S. Kele¸s, Indefinite almost paracontact metric manifolds, Internat. J. Math. Math. Sci. 2010 (2010), 19 pp. Art. ID 846195.
  • [30] M.M. Tripathi and P. Gupta, T -curvature tensor on a semi-Riemannian manifolds, Jour. Adv. Math. Stud. 4 (2011), no. 1, 117–129.
  • [31] M.M. Tripathi and P. Gupta, On (N (k), ξ)-semi-Riemannian manifolds: Semisymmetry, Preprint.
  • [32] K. Yano, Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im- perial Univ. Proc. 16 (1940), 195–200.
  • [33] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
  • [34] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom. 2 (1968), 161–184.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Mukut Mani Trıpathı

Punam Gupta Bu kişi benim

Yayımlanma Tarihi 30 Ekim 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 5 Sayı: 2

Kaynak Göster

APA Trıpathı, M. M., & Gupta, P. (2012). ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. International Electronic Journal of Geometry, 5(2), 95-167.
AMA Trıpathı MM, Gupta P. ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. Int. Electron. J. Geom. Ekim 2012;5(2):95-167.
Chicago Trıpathı, Mukut Mani, ve Punam Gupta. “ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES”. International Electronic Journal of Geometry 5, sy. 2 (Ekim 2012): 95-167.
EndNote Trıpathı MM, Gupta P (01 Ekim 2012) ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. International Electronic Journal of Geometry 5 2 95–167.
IEEE M. M. Trıpathı ve P. Gupta, “ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES”, Int. Electron. J. Geom., c. 5, sy. 2, ss. 95–167, 2012.
ISNAD Trıpathı, Mukut Mani - Gupta, Punam. “ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES”. International Electronic Journal of Geometry 5/2 (Ekim 2012), 95-167.
JAMA Trıpathı MM, Gupta P. ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. Int. Electron. J. Geom. 2012;5:95–167.
MLA Trıpathı, Mukut Mani ve Punam Gupta. “ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES”. International Electronic Journal of Geometry, c. 5, sy. 2, 2012, ss. 95-167.
Vancouver Trıpathı MM, Gupta P. ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. Int. Electron. J. Geom. 2012;5(2):95-167.