[1] J.K. Beem and P.E. Ehrlich, Global Lorentzian geometry, Marcel Dekker, New York,
1981.
[2] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathemat- ics,
Springer-Verlag, Berlin, 509 (1976), 146.
[3] D.E. Blair, J.-S. Kim and M.M. Tripathi, On the concircular curvature tensor of a contact
metric manifold, J. Korean Math. Soc. 42 (2005), no. 5, 883–892.
[4] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053–
1065.
[5] R. Deszcz, On conformally flat Riemannian manifolds satisfying certain curvature condi-
tions, Tensor (N.S.) 49 (1990), 134-145.
[6] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudosym- metry
curvature conditions, Geometry and Topology of Submanifolds, II, Avignon, May, 1988, World Sci.
Publ., Singapore 1990, 134-145.
[7] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain
pseudosymmetry curvature conditions, Colloq. Math. 62 (1991), 103-120.
[8] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math.
Acad. Sinica 15 (1987), 311–322.
[9] R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math.
57 (1989), 89–92.
[10] R. Deszcz, L. Verstraelen and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces
of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), no. 2, 167–179.
[11] K.L. Duggal, Space time manifolds and contact structures, Internat. J. Math. Math. Sci.
13(1990), 545-554.
[12] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949. [13] Y. Ishii,
On conharmonic transformations, Tensor (N.S.) 7 (1957), 73–80.
[14] S. Hong, C. Özgür and M.M. Tripathi, On some classes of Kenmotsu manifold, Kuwait J. Sci.
Engrg. 33 (2006), no. 2, 19–32.
[15] K. Kenmotsu, A class of almost contact Riemannian manifold, Tˆohoku Math. J. (2)
24 (1972), 93–103.
[16] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci.
12 (1989), no. 2, 151–156.
[17] B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic Press,
New York, London, 1983.
[18] C. On a class of para-Sasakian manifold, Turk. J. Math. 29 (2005), 249–257.
[19] C. Özgür, On Kenmotsu manifolds satisfying certain pseudosymmetry conditions, World Applied
Sciences Journal 1 (2006), no. 2, 144–149.
[20] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance, Yoko-
hama Math. J. 18 (1970), 105–108.
[21] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance II,
Yokohama Math. J. 19 (1971), no. 2, 97–103.
[22] G.P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci.
5 (1982), no. 1, 133–139.
[23] B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math.
Soc. 94 (2002), no. 3, 163–166.
[24] M. Prvanovi´c, On SP-Sasakian manifold satisfying some curvature conditions, SUT J. Math.
26 (1990), 201–220.
[25] S. Sasaki, On differentiate manifolds with certain structures which are closely related to
almost contact structure I, Tˆohoku Math. J. 12 (1960), 459-476.
[26] I. Satö, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), no.
3, 219-224.
[27] T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tˆohoku Math J.
21 (1969), 271–290.
[28] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tˆohoku Math J. 40 (1988),
441–448.
[29] M.M. Tripathi, E. Kılıc¸, S. Yu¨ksel Perkta¸s and S. Kele¸s, Indefinite almost paracontact
metric manifolds, Internat. J. Math. Math. Sci. 2010 (2010), 19 pp. Art. ID 846195.
[30] M.M. Tripathi and P. Gupta, T -curvature tensor on a semi-Riemannian manifolds, Jour.
Adv. Math. Stud. 4 (2011), no. 1, 117–129.
[31] M.M. Tripathi and P. Gupta, On (N (k), ξ)-semi-Riemannian manifolds: Semisymmetry, Preprint.
[32] K. Yano, Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im-
perial Univ. Proc. 16 (1940), 195–200.
[33] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies
32, Princeton University Press, 1953.
[34] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group,
J. Diff. Geom. 2 (1968), 161–184.
[1] J.K. Beem and P.E. Ehrlich, Global Lorentzian geometry, Marcel Dekker, New York,
1981.
[2] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathemat- ics,
Springer-Verlag, Berlin, 509 (1976), 146.
[3] D.E. Blair, J.-S. Kim and M.M. Tripathi, On the concircular curvature tensor of a contact
metric manifold, J. Korean Math. Soc. 42 (2005), no. 5, 883–892.
[4] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053–
1065.
[5] R. Deszcz, On conformally flat Riemannian manifolds satisfying certain curvature condi-
tions, Tensor (N.S.) 49 (1990), 134-145.
[6] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudosym- metry
curvature conditions, Geometry and Topology of Submanifolds, II, Avignon, May, 1988, World Sci.
Publ., Singapore 1990, 134-145.
[7] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain
pseudosymmetry curvature conditions, Colloq. Math. 62 (1991), 103-120.
[8] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math.
Acad. Sinica 15 (1987), 311–322.
[9] R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math.
57 (1989), 89–92.
[10] R. Deszcz, L. Verstraelen and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces
of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), no. 2, 167–179.
[11] K.L. Duggal, Space time manifolds and contact structures, Internat. J. Math. Math. Sci.
13(1990), 545-554.
[12] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949. [13] Y. Ishii,
On conharmonic transformations, Tensor (N.S.) 7 (1957), 73–80.
[14] S. Hong, C. Özgür and M.M. Tripathi, On some classes of Kenmotsu manifold, Kuwait J. Sci.
Engrg. 33 (2006), no. 2, 19–32.
[15] K. Kenmotsu, A class of almost contact Riemannian manifold, Tˆohoku Math. J. (2)
24 (1972), 93–103.
[16] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci.
12 (1989), no. 2, 151–156.
[17] B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic Press,
New York, London, 1983.
[18] C. On a class of para-Sasakian manifold, Turk. J. Math. 29 (2005), 249–257.
[19] C. Özgür, On Kenmotsu manifolds satisfying certain pseudosymmetry conditions, World Applied
Sciences Journal 1 (2006), no. 2, 144–149.
[20] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance, Yoko-
hama Math. J. 18 (1970), 105–108.
[21] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance II,
Yokohama Math. J. 19 (1971), no. 2, 97–103.
[22] G.P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci.
5 (1982), no. 1, 133–139.
[23] B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math.
Soc. 94 (2002), no. 3, 163–166.
[24] M. Prvanovi´c, On SP-Sasakian manifold satisfying some curvature conditions, SUT J. Math.
26 (1990), 201–220.
[25] S. Sasaki, On differentiate manifolds with certain structures which are closely related to
almost contact structure I, Tˆohoku Math. J. 12 (1960), 459-476.
[26] I. Satö, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), no.
3, 219-224.
[27] T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tˆohoku Math J.
21 (1969), 271–290.
[28] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tˆohoku Math J. 40 (1988),
441–448.
[29] M.M. Tripathi, E. Kılıc¸, S. Yu¨ksel Perkta¸s and S. Kele¸s, Indefinite almost paracontact
metric manifolds, Internat. J. Math. Math. Sci. 2010 (2010), 19 pp. Art. ID 846195.
[30] M.M. Tripathi and P. Gupta, T -curvature tensor on a semi-Riemannian manifolds, Jour.
Adv. Math. Stud. 4 (2011), no. 1, 117–129.
[31] M.M. Tripathi and P. Gupta, On (N (k), ξ)-semi-Riemannian manifolds: Semisymmetry, Preprint.
[32] K. Yano, Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im-
perial Univ. Proc. 16 (1940), 195–200.
[33] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies
32, Princeton University Press, 1953.
[34] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group,
J. Diff. Geom. 2 (1968), 161–184.
Trıpathı, M. M., & Gupta, P. (2012). ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. International Electronic Journal of Geometry, 5(2), 95-167.
AMA
Trıpathı MM, Gupta P. ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. Int. Electron. J. Geom. Ekim 2012;5(2):95-167.
Chicago
Trıpathı, Mukut Mani, ve Punam Gupta. “ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES”. International Electronic Journal of Geometry 5, sy. 2 (Ekim 2012): 95-167.
EndNote
Trıpathı MM, Gupta P (01 Ekim 2012) ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. International Electronic Journal of Geometry 5 2 95–167.
IEEE
M. M. Trıpathı ve P. Gupta, “ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES”, Int. Electron. J. Geom., c. 5, sy. 2, ss. 95–167, 2012.
ISNAD
Trıpathı, Mukut Mani - Gupta, Punam. “ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES”. International Electronic Journal of Geometry 5/2 (Ekim 2012), 95-167.
JAMA
Trıpathı MM, Gupta P. ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. Int. Electron. J. Geom. 2012;5:95–167.
MLA
Trıpathı, Mukut Mani ve Punam Gupta. “ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES”. International Electronic Journal of Geometry, c. 5, sy. 2, 2012, ss. 95-167.
Vancouver
Trıpathı MM, Gupta P. ON (N(k);ξ)-SEMI-RIEMANNIAN MANIFOLDS: PSEUDOSYMMETRIES. Int. Electron. J. Geom. 2012;5(2):95-167.