[1] Akc¸a, Z. and Kaya, R., On The Taxicab Trigonometry, Jour. of Inst. of Math&Comp.
Sci(Math.Ser), 10(1997), no. 3, 151-159.
[2] Akc¸a, Z. and Kaya, R., On The Distance Formulae in Three Dimensional Taxicab Space, Hadronic
Journal, 27(2004), no. 5, 521-532.
[3] Bayar, A., Ekmekçi, S. and O¨ zcan, M., On Trigonometric Functions and Cosine and Sine
Rules in Taxicab Plan, International Electronic Journal of Geometry (IEJG), 2(2009), no. 1, 17-24.
[4] Caballero, D., Taxicab Geometry; some problems and solution for square grid-based fire spread
simulation, V International Conference on Forest Fire Research D. X. Viegas (Ed.), 2006.
[5] Divjak, B., Notes on Taxicab Geometry, KoG 5(2000), 5-9.
[6] Ekici, C., Kocayusufog˘lu, I˙. and Ak¸ca, Z., The Norm in Taxicab Geometry, Tr. Jour. of
Mathematics, 22(1998), 295-307.
[7] Gelişgen,Ö . and Kaya, R., The Taxicab Space Group, Acta Mathematica Hungarica,
122(2009), no. 1-2, 187-200.
[8] Gray, A., Modern Differential Geometry of Curves and Surfaces, CRS Press, Inc. 1993.
[9] Hacısalihoğlu, H. H., 2 ve 3 Boyutlu uzaylarda Analitik Geometri, Ankara, 1995.
[10] Izquierdo, A. F., Geometria y Topologia para entender las helices de la Naturaleza, San
Alberto, 2009.
[11] Kaya, R., Analitik Geometri, Bilim Teknik Yayınevi, Eski¸sehir, 2002.
[12] Çolakoğlu, B. H. and Kaya, R., Volume of a Tetrahedron in the Taxicab Space, Missouri
Journal of Mathematical Sciences, 21(2009), no. 1, 21-27.
[13] Çolakoğlu, B. H. and Kaya, R., Regular Polygons in Some Models of Protractor Geometry,
International Electronic Journal of Geometry (IEJG), 2(2009), no. 2, 76-87.
[14] Kocayusufoğlu, İ, Akça, Z. and Ekici, C., The Inner-Product of Taxicab Geometry, The
Scientific J. The Kazakh State National University, on the section Mathematics, Mechanics and
Informatics, 20(2000), no. 1, 33-39.
[15] Kocayusufoğu, İ. and Ekici, C., Some Area Problems in Taxicab Geometry, Jour. of Inst. of
Math&Comp. Sci(Math. Ser.), 12(1999), no. 2, 95-99.
[16] Kocayusufoğlu, İ. and Özdamar, E., The Iso-Taxicab Gauss Curvature, Differential Geometry,
Dynamical Systems, 7(2006), 138-143.
[17] Kocayusufoğlu, İ. and Özdamar, E., Isometries of Taxicab Geometry, Commun. Fac. Sci.
Univ. Ank. Series A1, 47(1998), 73-83.
[18] Krause, E. F., Taxicab Geometry, Addison-Wesley, Menlo Park, NJ, 1975.
[19] Morera, D. M., Computing Geodesic Paths on Manifolds, 3D Graphic Systems, IMPA, 2003.
[20] Özcan, M. and Kaya, R., On the Ratio of Driected Lengths in the Taxicab Plane and Related
Properties, Missouri Journal of Mathematical Sciences, 14(2002), 107-117.
[21] Özcan, M. and Kaya, R., Area of a Triangle in Terms of the Taxicab Distance, Missouri
Jour. of Mathematical Sciences, 15(2003), 178-185.
[1] Akc¸a, Z. and Kaya, R., On The Taxicab Trigonometry, Jour. of Inst. of Math&Comp.
Sci(Math.Ser), 10(1997), no. 3, 151-159.
[2] Akc¸a, Z. and Kaya, R., On The Distance Formulae in Three Dimensional Taxicab Space, Hadronic
Journal, 27(2004), no. 5, 521-532.
[3] Bayar, A., Ekmekçi, S. and O¨ zcan, M., On Trigonometric Functions and Cosine and Sine
Rules in Taxicab Plan, International Electronic Journal of Geometry (IEJG), 2(2009), no. 1, 17-24.
[4] Caballero, D., Taxicab Geometry; some problems and solution for square grid-based fire spread
simulation, V International Conference on Forest Fire Research D. X. Viegas (Ed.), 2006.
[5] Divjak, B., Notes on Taxicab Geometry, KoG 5(2000), 5-9.
[6] Ekici, C., Kocayusufog˘lu, I˙. and Ak¸ca, Z., The Norm in Taxicab Geometry, Tr. Jour. of
Mathematics, 22(1998), 295-307.
[7] Gelişgen,Ö . and Kaya, R., The Taxicab Space Group, Acta Mathematica Hungarica,
122(2009), no. 1-2, 187-200.
[8] Gray, A., Modern Differential Geometry of Curves and Surfaces, CRS Press, Inc. 1993.
[9] Hacısalihoğlu, H. H., 2 ve 3 Boyutlu uzaylarda Analitik Geometri, Ankara, 1995.
[10] Izquierdo, A. F., Geometria y Topologia para entender las helices de la Naturaleza, San
Alberto, 2009.
[11] Kaya, R., Analitik Geometri, Bilim Teknik Yayınevi, Eski¸sehir, 2002.
[12] Çolakoğlu, B. H. and Kaya, R., Volume of a Tetrahedron in the Taxicab Space, Missouri
Journal of Mathematical Sciences, 21(2009), no. 1, 21-27.
[13] Çolakoğlu, B. H. and Kaya, R., Regular Polygons in Some Models of Protractor Geometry,
International Electronic Journal of Geometry (IEJG), 2(2009), no. 2, 76-87.
[14] Kocayusufoğlu, İ, Akça, Z. and Ekici, C., The Inner-Product of Taxicab Geometry, The
Scientific J. The Kazakh State National University, on the section Mathematics, Mechanics and
Informatics, 20(2000), no. 1, 33-39.
[15] Kocayusufoğu, İ. and Ekici, C., Some Area Problems in Taxicab Geometry, Jour. of Inst. of
Math&Comp. Sci(Math. Ser.), 12(1999), no. 2, 95-99.
[16] Kocayusufoğlu, İ. and Özdamar, E., The Iso-Taxicab Gauss Curvature, Differential Geometry,
Dynamical Systems, 7(2006), 138-143.
[17] Kocayusufoğlu, İ. and Özdamar, E., Isometries of Taxicab Geometry, Commun. Fac. Sci.
Univ. Ank. Series A1, 47(1998), 73-83.
[18] Krause, E. F., Taxicab Geometry, Addison-Wesley, Menlo Park, NJ, 1975.
[19] Morera, D. M., Computing Geodesic Paths on Manifolds, 3D Graphic Systems, IMPA, 2003.
[20] Özcan, M. and Kaya, R., On the Ratio of Driected Lengths in the Taxicab Plane and Related
Properties, Missouri Journal of Mathematical Sciences, 14(2002), 107-117.
[21] Özcan, M. and Kaya, R., Area of a Triangle in Terms of the Taxicab Distance, Missouri
Jour. of Mathematical Sciences, 15(2003), 178-185.
Ekici, C., Cengiz, E., & Sevinç, S. (2012). THE TAXICAB HELIX ON TAXICAB CYLINDER. International Electronic Journal of Geometry, 5(2), 168-182.
AMA
Ekici C, Cengiz E, Sevinç S. THE TAXICAB HELIX ON TAXICAB CYLINDER. Int. Electron. J. Geom. October 2012;5(2):168-182.
Chicago
Ekici, Cumali, E.yasemin Cengiz, and Sibel Sevinç. “THE TAXICAB HELIX ON TAXICAB CYLINDER”. International Electronic Journal of Geometry 5, no. 2 (October 2012): 168-82.
EndNote
Ekici C, Cengiz E, Sevinç S (October 1, 2012) THE TAXICAB HELIX ON TAXICAB CYLINDER. International Electronic Journal of Geometry 5 2 168–182.
IEEE
C. Ekici, E. Cengiz, and S. Sevinç, “THE TAXICAB HELIX ON TAXICAB CYLINDER”, Int. Electron. J. Geom., vol. 5, no. 2, pp. 168–182, 2012.
ISNAD
Ekici, Cumali et al. “THE TAXICAB HELIX ON TAXICAB CYLINDER”. International Electronic Journal of Geometry 5/2 (October 2012), 168-182.
JAMA
Ekici C, Cengiz E, Sevinç S. THE TAXICAB HELIX ON TAXICAB CYLINDER. Int. Electron. J. Geom. 2012;5:168–182.
MLA
Ekici, Cumali et al. “THE TAXICAB HELIX ON TAXICAB CYLINDER”. International Electronic Journal of Geometry, vol. 5, no. 2, 2012, pp. 168-82.
Vancouver
Ekici C, Cengiz E, Sevinç S. THE TAXICAB HELIX ON TAXICAB CYLINDER. Int. Electron. J. Geom. 2012;5(2):168-82.