Research Article
BibTex RIS Cite

THE TAXICAB HELIX ON TAXICAB CYLINDER

Year 2012, Volume: 5 Issue: 2, 168 - 182, 30.10.2012

Abstract

 

References

  • [1] Akc¸a, Z. and Kaya, R., On The Taxicab Trigonometry, Jour. of Inst. of Math&Comp. Sci(Math.Ser), 10(1997), no. 3, 151-159.
  • [2] Akc¸a, Z. and Kaya, R., On The Distance Formulae in Three Dimensional Taxicab Space, Hadronic Journal, 27(2004), no. 5, 521-532.
  • [3] Bayar, A., Ekmekçi, S. and O¨ zcan, M., On Trigonometric Functions and Cosine and Sine Rules in Taxicab Plan, International Electronic Journal of Geometry (IEJG), 2(2009), no. 1, 17-24.
  • [4] Caballero, D., Taxicab Geometry; some problems and solution for square grid-based fire spread simulation, V International Conference on Forest Fire Research D. X. Viegas (Ed.), 2006.
  • [5] Divjak, B., Notes on Taxicab Geometry, KoG 5(2000), 5-9.
  • [6] Ekici, C., Kocayusufog˘lu, I˙. and Ak¸ca, Z., The Norm in Taxicab Geometry, Tr. Jour. of Mathematics, 22(1998), 295-307.
  • [7] Gelişgen,Ö . and Kaya, R., The Taxicab Space Group, Acta Mathematica Hungarica, 122(2009), no. 1-2, 187-200.
  • [8] Gray, A., Modern Differential Geometry of Curves and Surfaces, CRS Press, Inc. 1993.
  • [9] Hacısalihoğlu, H. H., 2 ve 3 Boyutlu uzaylarda Analitik Geometri, Ankara, 1995.
  • [10] Izquierdo, A. F., Geometria y Topologia para entender las helices de la Naturaleza, San Alberto, 2009.
  • [11] Kaya, R., Analitik Geometri, Bilim Teknik Yayınevi, Eski¸sehir, 2002.
  • [12] Çolakoğlu, B. H. and Kaya, R., Volume of a Tetrahedron in the Taxicab Space, Missouri Journal of Mathematical Sciences, 21(2009), no. 1, 21-27.
  • [13] Çolakoğlu, B. H. and Kaya, R., Regular Polygons in Some Models of Protractor Geometry, International Electronic Journal of Geometry (IEJG), 2(2009), no. 2, 76-87.
  • [14] Kocayusufoğlu, İ, Akça, Z. and Ekici, C., The Inner-Product of Taxicab Geometry, The Scientific J. The Kazakh State National University, on the section Mathematics, Mechanics and Informatics, 20(2000), no. 1, 33-39.
  • [15] Kocayusufoğu, İ. and Ekici, C., Some Area Problems in Taxicab Geometry, Jour. of Inst. of Math&Comp. Sci(Math. Ser.), 12(1999), no. 2, 95-99.
  • [16] Kocayusufoğlu, İ. and Özdamar, E., The Iso-Taxicab Gauss Curvature, Differential Geometry, Dynamical Systems, 7(2006), 138-143.
  • [17] Kocayusufoğlu, İ. and Özdamar, E., Isometries of Taxicab Geometry, Commun. Fac. Sci. Univ. Ank. Series A1, 47(1998), 73-83.
  • [18] Krause, E. F., Taxicab Geometry, Addison-Wesley, Menlo Park, NJ, 1975.
  • [19] Morera, D. M., Computing Geodesic Paths on Manifolds, 3D Graphic Systems, IMPA, 2003.
  • [20] Özcan, M. and Kaya, R., On the Ratio of Driected Lengths in the Taxicab Plane and Related Properties, Missouri Journal of Mathematical Sciences, 14(2002), 107-117.
  • [21] Özcan, M. and Kaya, R., Area of a Triangle in Terms of the Taxicab Distance, Missouri Jour. of Mathematical Sciences, 15(2003), 178-185.
  • [22] O’ Neill, B., Elementary Differential Geometry, Academic PressInc., 1966.
  • [23] So, S. S., Recent Developments in Taxicab Geometry, Cubo Matematica Educacional 4(2002), no. 2, 76-96.
  • [24] Sowell, K. O., Taxicab Geometry-A New Slant, Mathematics Magazine 62(1989), 238-248.
  • [25] Thompson, K. and Dray, T., Taxicab Angles and Trigonometry, Pi Mu Epsilon, 11(2000), 87-96.
  • [26] http://en.wikipedia.org/wiki/Helix.
Year 2012, Volume: 5 Issue: 2, 168 - 182, 30.10.2012

Abstract

References

  • [1] Akc¸a, Z. and Kaya, R., On The Taxicab Trigonometry, Jour. of Inst. of Math&Comp. Sci(Math.Ser), 10(1997), no. 3, 151-159.
  • [2] Akc¸a, Z. and Kaya, R., On The Distance Formulae in Three Dimensional Taxicab Space, Hadronic Journal, 27(2004), no. 5, 521-532.
  • [3] Bayar, A., Ekmekçi, S. and O¨ zcan, M., On Trigonometric Functions and Cosine and Sine Rules in Taxicab Plan, International Electronic Journal of Geometry (IEJG), 2(2009), no. 1, 17-24.
  • [4] Caballero, D., Taxicab Geometry; some problems and solution for square grid-based fire spread simulation, V International Conference on Forest Fire Research D. X. Viegas (Ed.), 2006.
  • [5] Divjak, B., Notes on Taxicab Geometry, KoG 5(2000), 5-9.
  • [6] Ekici, C., Kocayusufog˘lu, I˙. and Ak¸ca, Z., The Norm in Taxicab Geometry, Tr. Jour. of Mathematics, 22(1998), 295-307.
  • [7] Gelişgen,Ö . and Kaya, R., The Taxicab Space Group, Acta Mathematica Hungarica, 122(2009), no. 1-2, 187-200.
  • [8] Gray, A., Modern Differential Geometry of Curves and Surfaces, CRS Press, Inc. 1993.
  • [9] Hacısalihoğlu, H. H., 2 ve 3 Boyutlu uzaylarda Analitik Geometri, Ankara, 1995.
  • [10] Izquierdo, A. F., Geometria y Topologia para entender las helices de la Naturaleza, San Alberto, 2009.
  • [11] Kaya, R., Analitik Geometri, Bilim Teknik Yayınevi, Eski¸sehir, 2002.
  • [12] Çolakoğlu, B. H. and Kaya, R., Volume of a Tetrahedron in the Taxicab Space, Missouri Journal of Mathematical Sciences, 21(2009), no. 1, 21-27.
  • [13] Çolakoğlu, B. H. and Kaya, R., Regular Polygons in Some Models of Protractor Geometry, International Electronic Journal of Geometry (IEJG), 2(2009), no. 2, 76-87.
  • [14] Kocayusufoğlu, İ, Akça, Z. and Ekici, C., The Inner-Product of Taxicab Geometry, The Scientific J. The Kazakh State National University, on the section Mathematics, Mechanics and Informatics, 20(2000), no. 1, 33-39.
  • [15] Kocayusufoğu, İ. and Ekici, C., Some Area Problems in Taxicab Geometry, Jour. of Inst. of Math&Comp. Sci(Math. Ser.), 12(1999), no. 2, 95-99.
  • [16] Kocayusufoğlu, İ. and Özdamar, E., The Iso-Taxicab Gauss Curvature, Differential Geometry, Dynamical Systems, 7(2006), 138-143.
  • [17] Kocayusufoğlu, İ. and Özdamar, E., Isometries of Taxicab Geometry, Commun. Fac. Sci. Univ. Ank. Series A1, 47(1998), 73-83.
  • [18] Krause, E. F., Taxicab Geometry, Addison-Wesley, Menlo Park, NJ, 1975.
  • [19] Morera, D. M., Computing Geodesic Paths on Manifolds, 3D Graphic Systems, IMPA, 2003.
  • [20] Özcan, M. and Kaya, R., On the Ratio of Driected Lengths in the Taxicab Plane and Related Properties, Missouri Journal of Mathematical Sciences, 14(2002), 107-117.
  • [21] Özcan, M. and Kaya, R., Area of a Triangle in Terms of the Taxicab Distance, Missouri Jour. of Mathematical Sciences, 15(2003), 178-185.
  • [22] O’ Neill, B., Elementary Differential Geometry, Academic PressInc., 1966.
  • [23] So, S. S., Recent Developments in Taxicab Geometry, Cubo Matematica Educacional 4(2002), no. 2, 76-96.
  • [24] Sowell, K. O., Taxicab Geometry-A New Slant, Mathematics Magazine 62(1989), 238-248.
  • [25] Thompson, K. and Dray, T., Taxicab Angles and Trigonometry, Pi Mu Epsilon, 11(2000), 87-96.
  • [26] http://en.wikipedia.org/wiki/Helix.
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Cumali Ekici

E.yasemin Cengiz This is me

Sibel Sevinç This is me

Publication Date October 30, 2012
Published in Issue Year 2012 Volume: 5 Issue: 2

Cite

APA Ekici, C., Cengiz, E., & Sevinç, S. (2012). THE TAXICAB HELIX ON TAXICAB CYLINDER. International Electronic Journal of Geometry, 5(2), 168-182.
AMA Ekici C, Cengiz E, Sevinç S. THE TAXICAB HELIX ON TAXICAB CYLINDER. Int. Electron. J. Geom. October 2012;5(2):168-182.
Chicago Ekici, Cumali, E.yasemin Cengiz, and Sibel Sevinç. “THE TAXICAB HELIX ON TAXICAB CYLINDER”. International Electronic Journal of Geometry 5, no. 2 (October 2012): 168-82.
EndNote Ekici C, Cengiz E, Sevinç S (October 1, 2012) THE TAXICAB HELIX ON TAXICAB CYLINDER. International Electronic Journal of Geometry 5 2 168–182.
IEEE C. Ekici, E. Cengiz, and S. Sevinç, “THE TAXICAB HELIX ON TAXICAB CYLINDER”, Int. Electron. J. Geom., vol. 5, no. 2, pp. 168–182, 2012.
ISNAD Ekici, Cumali et al. “THE TAXICAB HELIX ON TAXICAB CYLINDER”. International Electronic Journal of Geometry 5/2 (October 2012), 168-182.
JAMA Ekici C, Cengiz E, Sevinç S. THE TAXICAB HELIX ON TAXICAB CYLINDER. Int. Electron. J. Geom. 2012;5:168–182.
MLA Ekici, Cumali et al. “THE TAXICAB HELIX ON TAXICAB CYLINDER”. International Electronic Journal of Geometry, vol. 5, no. 2, 2012, pp. 168-82.
Vancouver Ekici C, Cengiz E, Sevinç S. THE TAXICAB HELIX ON TAXICAB CYLINDER. Int. Electron. J. Geom. 2012;5(2):168-82.