ON SUBMANIFOLDS OF AN ALMOST PSEUDO CONTACT METRIC MANIFOLD
Year 2012,
Volume: 5 Issue: 2, 19 - 26, 30.10.2012
Mehmet Atçeken
Abstract
![]()
References
- [1] Atçeken, M., On Geometry of Submanifolds of (LCS)n-Manifolds, Hindawi Publishing Cor-
poration International Journal of Mathematics and Mathematical Sciences., (2012), Article
ID 304647, 11 pages doi:10.1155/2012/304647.
- [2] Karadag, H. B. and Atçeken, M., Invariant Submanifolds of Sasakian Manifolds, Balkan
Journal of Geometry and Its Applications., 12(2007), no.1, 68-75.
- [3] Debnath, P. and Konar, A., Almost Pseudo Contact Structure, Commun. Korean Math. Soc.,
26(2011), no.1, 125-133, DOI 10.4134/CKMS.2011.26.1.125.
Year 2012,
Volume: 5 Issue: 2, 19 - 26, 30.10.2012
Mehmet Atçeken
References
- [1] Atçeken, M., On Geometry of Submanifolds of (LCS)n-Manifolds, Hindawi Publishing Cor-
poration International Journal of Mathematics and Mathematical Sciences., (2012), Article
ID 304647, 11 pages doi:10.1155/2012/304647.
- [2] Karadag, H. B. and Atçeken, M., Invariant Submanifolds of Sasakian Manifolds, Balkan
Journal of Geometry and Its Applications., 12(2007), no.1, 68-75.
- [3] Debnath, P. and Konar, A., Almost Pseudo Contact Structure, Commun. Korean Math. Soc.,
26(2011), no.1, 125-133, DOI 10.4134/CKMS.2011.26.1.125.
There are 3 citations in total.