Araştırma Makalesi
BibTex RIS Kaynak Göster

ON DOUGLAS SPACES WITH VANISHING E-CURVATURE

Yıl 2012, Cilt: 5 Sayı: 1, 36 - 41, 30.04.2012

Öz


Kaynakça

  • [1] Akbar-Zadeh, H., Initiation to Global Finslerian Geometry, North-Holland Mathematical Library, 2006.
  • [2] Bácsó, S. Ilosvay, F. and Kis, B., Landsberg spaces with common geodesics, Publ. Math. Debrecen. 42(1993), 139-144.
  • [3] Bácsó, S. and Matsumoto, M., Reduction theorems of certain Landsberg spaces to Berwald spaces, Publ. Math. Debrecen. 48(1996), 357-366.
  • [4] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
  • [5] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type II, Projectively flat spaces, Publ. Math. Debrecen. 53(1998), 423-438.
  • [6] Bidabad, B. and Tayebi, A., A classification of some Finsler connections, Publ. Math. De- brecen. 71(2007), 253-260.
  • [7] Chen, X. and Shen, Z., On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512. [8] Douglas, J., The general geometry of path, Ann. Math. 29(1927-28), 143-168.
  • [9] Najafi, B. Shen, Z. and Tayebi, A., On a projective class of Finsler metrics, Publ. Math. Debrecen. 70(2007), 211-219.
  • [10] Najafi, B. Shen, Z. and Tayebi, A., Finsler metrics of scalar flag curvature with special non- Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
  • [11] Najafi, B. and Tayebi, A. Finsler Metrics of scalar flag curvature and projective invariants, Balkan Journal of Geometry and Its Applications, 15(2010), 90-99.
  • [12] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
  • [13] Shen, Z., Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
  • [14] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry, Publ. Math. Debrecen. 72(2008), 1-15.
  • [15] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections, Bull. Iran. Math. Soc. 36(2010), no. 2, 57-73.
  • [16] Tayebi, A. and Peyghan, E., Special Berwald Metrics, Symmetry, Integrability and Geometry: Methods and its Applications, 6(2010), 008.
  • [17] Tayebi, A. and Peyghan, E., On Ricci tensors of Randers metrics, Journal of Geometry and Physics, 60(2010), 1665-1670.
  • [18] Weyl, H., Zur Infinitesimal geometrie, G¨ottinger Nachrichten. (1921), 99-112.
Yıl 2012, Cilt: 5 Sayı: 1, 36 - 41, 30.04.2012

Öz

Kaynakça

  • [1] Akbar-Zadeh, H., Initiation to Global Finslerian Geometry, North-Holland Mathematical Library, 2006.
  • [2] Bácsó, S. Ilosvay, F. and Kis, B., Landsberg spaces with common geodesics, Publ. Math. Debrecen. 42(1993), 139-144.
  • [3] Bácsó, S. and Matsumoto, M., Reduction theorems of certain Landsberg spaces to Berwald spaces, Publ. Math. Debrecen. 48(1996), 357-366.
  • [4] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
  • [5] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type II, Projectively flat spaces, Publ. Math. Debrecen. 53(1998), 423-438.
  • [6] Bidabad, B. and Tayebi, A., A classification of some Finsler connections, Publ. Math. De- brecen. 71(2007), 253-260.
  • [7] Chen, X. and Shen, Z., On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512. [8] Douglas, J., The general geometry of path, Ann. Math. 29(1927-28), 143-168.
  • [9] Najafi, B. Shen, Z. and Tayebi, A., On a projective class of Finsler metrics, Publ. Math. Debrecen. 70(2007), 211-219.
  • [10] Najafi, B. Shen, Z. and Tayebi, A., Finsler metrics of scalar flag curvature with special non- Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
  • [11] Najafi, B. and Tayebi, A. Finsler Metrics of scalar flag curvature and projective invariants, Balkan Journal of Geometry and Its Applications, 15(2010), 90-99.
  • [12] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
  • [13] Shen, Z., Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
  • [14] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry, Publ. Math. Debrecen. 72(2008), 1-15.
  • [15] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections, Bull. Iran. Math. Soc. 36(2010), no. 2, 57-73.
  • [16] Tayebi, A. and Peyghan, E., Special Berwald Metrics, Symmetry, Integrability and Geometry: Methods and its Applications, 6(2010), 008.
  • [17] Tayebi, A. and Peyghan, E., On Ricci tensors of Randers metrics, Journal of Geometry and Physics, 60(2010), 1665-1670.
  • [18] Weyl, H., Zur Infinitesimal geometrie, G¨ottinger Nachrichten. (1921), 99-112.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

A. Tayebı Bu kişi benim

E. Peyghan

Yayımlanma Tarihi 30 Nisan 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 5 Sayı: 1

Kaynak Göster

APA Tayebı, A., & Peyghan, E. (2012). ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. International Electronic Journal of Geometry, 5(1), 36-41.
AMA Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. Nisan 2012;5(1):36-41.
Chicago Tayebı, A., ve E. Peyghan. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry 5, sy. 1 (Nisan 2012): 36-41.
EndNote Tayebı A, Peyghan E (01 Nisan 2012) ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. International Electronic Journal of Geometry 5 1 36–41.
IEEE A. Tayebı ve E. Peyghan, “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”, Int. Electron. J. Geom., c. 5, sy. 1, ss. 36–41, 2012.
ISNAD Tayebı, A. - Peyghan, E. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry 5/1 (Nisan 2012), 36-41.
JAMA Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. 2012;5:36–41.
MLA Tayebı, A. ve E. Peyghan. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry, c. 5, sy. 1, 2012, ss. 36-41.
Vancouver Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. 2012;5(1):36-41.