Araştırma Makalesi
BibTex RIS Kaynak Göster

Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature

Yıl 2009, Cilt: 2 Sayı: 2, 63 - 70, 30.10.2009

Öz


Kaynakça

  • [1] Shima, H., Hessian manifolds of constant Hessian sectional curvature, J. Math. Soc. Japan, Vol 47, No.4, (1995), 735-753.
  • [2] Shima, H., Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble),30-3, (1980), 91-128.
  • [3] Shima, H., Vanishing theorems for compact Hessian manifolds, Ann. Inst. Fourier (Greno- ble),36-3, (1986), 183-205.
  • [4] Shima, H., Yagi, K., Geometry of Hessian manifolds, Diff. Geo. and Its Appl. 7 (1997), 277-290.
  • [5] Bektas, M, Yildirim, M., Kulahci, M., On hypersurfaces of Hessian manifolds with constant Hessian sectional curvature, Journal of Math. Statistics, 1 (2) ,(2005), 115-118.
  • [6] Bektas, M., Yildirim, M., Integral inequalities for submanifolds of Hessian Manifolds with constant Hessian sectional curvature, Iranian Journal of Sci. and Tech. Trans. A , Vol.30, No.A2, (2006), 235-239.
  • [7] Yildirim Yilmaz, M. Bektas, M., A survey on curvatures of Hessian manifolds, Chaos, Solitons and Fractals, vol.38, 3, (2008),620-630.
  • [8] Simons, J., Minimal variety in Riemannian manifolds, Ann. of Math. 88,(1968), 62-105.
  • [9] Chern, S. S., Do Cormo M., Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, Funct. Analysis and Related fields, Springer-Verlag, (1970),59-75.
  • [10] Nomizu, K., Smyth, B., A formula of Simons type and hypersurfaces with constant mean curvature, J. Diff. Geo. 3,(1969), 367-377.
  • [11] Nakagawa, H., Yokote, I., On hypersurfaces with constant scalar curvature in a Riemannian manifold of constant curvature, Kodai Math. Sem. Rep., 24, (1972), 471-481.
  • [12] Omachi, E., Hypersurfaces with harmonic curvature in a space of constant curvature, Kodai Math. J. 9, (1986), 170-174.
Yıl 2009, Cilt: 2 Sayı: 2, 63 - 70, 30.10.2009

Öz

Kaynakça

  • [1] Shima, H., Hessian manifolds of constant Hessian sectional curvature, J. Math. Soc. Japan, Vol 47, No.4, (1995), 735-753.
  • [2] Shima, H., Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble),30-3, (1980), 91-128.
  • [3] Shima, H., Vanishing theorems for compact Hessian manifolds, Ann. Inst. Fourier (Greno- ble),36-3, (1986), 183-205.
  • [4] Shima, H., Yagi, K., Geometry of Hessian manifolds, Diff. Geo. and Its Appl. 7 (1997), 277-290.
  • [5] Bektas, M, Yildirim, M., Kulahci, M., On hypersurfaces of Hessian manifolds with constant Hessian sectional curvature, Journal of Math. Statistics, 1 (2) ,(2005), 115-118.
  • [6] Bektas, M., Yildirim, M., Integral inequalities for submanifolds of Hessian Manifolds with constant Hessian sectional curvature, Iranian Journal of Sci. and Tech. Trans. A , Vol.30, No.A2, (2006), 235-239.
  • [7] Yildirim Yilmaz, M. Bektas, M., A survey on curvatures of Hessian manifolds, Chaos, Solitons and Fractals, vol.38, 3, (2008),620-630.
  • [8] Simons, J., Minimal variety in Riemannian manifolds, Ann. of Math. 88,(1968), 62-105.
  • [9] Chern, S. S., Do Cormo M., Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, Funct. Analysis and Related fields, Springer-Verlag, (1970),59-75.
  • [10] Nomizu, K., Smyth, B., A formula of Simons type and hypersurfaces with constant mean curvature, J. Diff. Geo. 3,(1969), 367-377.
  • [11] Nakagawa, H., Yokote, I., On hypersurfaces with constant scalar curvature in a Riemannian manifold of constant curvature, Kodai Math. Sem. Rep., 24, (1972), 471-481.
  • [12] Omachi, E., Hypersurfaces with harmonic curvature in a space of constant curvature, Kodai Math. J. 9, (1986), 170-174.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Münevver Y. Yılmaz

Mehmet Bektaş

Mahmut Ergüt Bu kişi benim

Yayımlanma Tarihi 30 Ekim 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 2 Sayı: 2

Kaynak Göster

APA Y. Yılmaz, M., Bektaş, M., & Ergüt, M. (2009). Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. International Electronic Journal of Geometry, 2(2), 63-70.
AMA Y. Yılmaz M, Bektaş M, Ergüt M. Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. Int. Electron. J. Geom. Ekim 2009;2(2):63-70.
Chicago Y. Yılmaz, Münevver, Mehmet Bektaş, ve Mahmut Ergüt. “Riemannian Hypersurfaces With Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature”. International Electronic Journal of Geometry 2, sy. 2 (Ekim 2009): 63-70.
EndNote Y. Yılmaz M, Bektaş M, Ergüt M (01 Ekim 2009) Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. International Electronic Journal of Geometry 2 2 63–70.
IEEE M. Y. Yılmaz, M. Bektaş, ve M. Ergüt, “Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature”, Int. Electron. J. Geom., c. 2, sy. 2, ss. 63–70, 2009.
ISNAD Y. Yılmaz, Münevver vd. “Riemannian Hypersurfaces With Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature”. International Electronic Journal of Geometry 2/2 (Ekim 2009), 63-70.
JAMA Y. Yılmaz M, Bektaş M, Ergüt M. Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. Int. Electron. J. Geom. 2009;2:63–70.
MLA Y. Yılmaz, Münevver vd. “Riemannian Hypersurfaces With Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature”. International Electronic Journal of Geometry, c. 2, sy. 2, 2009, ss. 63-70.
Vancouver Y. Yılmaz M, Bektaş M, Ergüt M. Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. Int. Electron. J. Geom. 2009;2(2):63-70.