[6] Chen, B.-Y., Riemannian submanifolds, in: Handbook of Differential Geometry, Vol. I, 187– 418,
North-Holland, Amsterdam, (eds. F. Dillen and L. Verstraelen), 2000.
[7] Chen, B.-Y., Riemannian geometry of Lagrangian submanifolds, Taiwanese J. Math., 5
(2001), no. 4, 681–723.
[9] Chen, B.-Y., Lagrangian H-umbilical submanifolds of para-K¨ahler manifolds, Taiwanese J.
Math., (to appear).
[10] Chen, B.-Y. and Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc.,
193 (1974), 257–266.
[11] Cort´es, V., The special geometry of Euclidean supersymmetry: a survey, Rev. Un. Mat.
Argentina, 47 (2006), no. 1, 29–34.
[12] Cort´es, V., Lawn, M.-A. and Sch¨afer, L., Affine hyperspheres associated to special para-
K¨ahler manifolds, Int. J. Geom. Methods Mod. Phys., 3 (2006), no. 5–6, 995–1009.
[13] Cort´es, V., Mayer, C., Mohaupt, T. and Saueressig, F., Special geometry of Euclidean super-
symmetry. I, Vector multiplets, J. High Energy Phys., 2004, no. 3, 028, 73 pp.
[14] Etayo, F., Santamar´ıa, R. and Tr´ıas, U. R., The geometry of a bi-Lagrangian manifold,
Differential Geom. Appl., 24 (2006), no. 1, 33–59.
[15] Hou, Z., Deng, S. and Kaneyuki, S., Dipolarizations in compact Lie algebras and homogeneous
para-Ka¨hler manifold, Tokyo J. Math., 20 (1997), no. 2, 381–388.
[16] Ponge, R. and Reckziegel, H., Twisted products in pseudo-Riemannian geometry, Geometriae
Dedicata, 48 (1993), no. 1, 15–25.
[17] Rashevskij, P. K., The scalar field in a stratified space, Trudy Sem. Vektor. Tenzor. Anal., 6
(1948), 225–248.
[18] Rozenfeld, B. A., On unitary and stratified spaces, Trudy Sem. Vektor. Tenzor. Anal., 7
(1949), 260–275.
[19] Ruse, H. S., On parallel fields of planes in a Riemannian manifold, Quart. J. Math. Oxford
Ser., 20 (1949), 218–234.
[6] Chen, B.-Y., Riemannian submanifolds, in: Handbook of Differential Geometry, Vol. I, 187– 418,
North-Holland, Amsterdam, (eds. F. Dillen and L. Verstraelen), 2000.
[7] Chen, B.-Y., Riemannian geometry of Lagrangian submanifolds, Taiwanese J. Math., 5
(2001), no. 4, 681–723.
[9] Chen, B.-Y., Lagrangian H-umbilical submanifolds of para-K¨ahler manifolds, Taiwanese J.
Math., (to appear).
[10] Chen, B.-Y. and Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc.,
193 (1974), 257–266.
[11] Cort´es, V., The special geometry of Euclidean supersymmetry: a survey, Rev. Un. Mat.
Argentina, 47 (2006), no. 1, 29–34.
[12] Cort´es, V., Lawn, M.-A. and Sch¨afer, L., Affine hyperspheres associated to special para-
K¨ahler manifolds, Int. J. Geom. Methods Mod. Phys., 3 (2006), no. 5–6, 995–1009.
[13] Cort´es, V., Mayer, C., Mohaupt, T. and Saueressig, F., Special geometry of Euclidean super-
symmetry. I, Vector multiplets, J. High Energy Phys., 2004, no. 3, 028, 73 pp.
[14] Etayo, F., Santamar´ıa, R. and Tr´ıas, U. R., The geometry of a bi-Lagrangian manifold,
Differential Geom. Appl., 24 (2006), no. 1, 33–59.
[15] Hou, Z., Deng, S. and Kaneyuki, S., Dipolarizations in compact Lie algebras and homogeneous
para-Ka¨hler manifold, Tokyo J. Math., 20 (1997), no. 2, 381–388.
[16] Ponge, R. and Reckziegel, H., Twisted products in pseudo-Riemannian geometry, Geometriae
Dedicata, 48 (1993), no. 1, 15–25.
[17] Rashevskij, P. K., The scalar field in a stratified space, Trudy Sem. Vektor. Tenzor. Anal., 6
(1948), 225–248.
[18] Rozenfeld, B. A., On unitary and stratified spaces, Trudy Sem. Vektor. Tenzor. Anal., 7
(1949), 260–275.
[19] Ruse, H. S., On parallel fields of planes in a Riemannian manifold, Quart. J. Math. Oxford
Ser., 20 (1949), 218–234.
Chen, B.-y. (2011). Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler n-Plane. International Electronic Journal of Geometry, 4(1), 1-14.
AMA
Chen By. Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler n-Plane. Int. Electron. J. Geom. Nisan 2011;4(1):1-14.
Chicago
Chen, Bang-yen. “Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler N-Plane”. International Electronic Journal of Geometry 4, sy. 1 (Nisan 2011): 1-14.
EndNote
Chen B-y (01 Nisan 2011) Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler n-Plane. International Electronic Journal of Geometry 4 1 1–14.
IEEE
B.-y. Chen, “Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler n-Plane”, Int. Electron. J. Geom., c. 4, sy. 1, ss. 1–14, 2011.
ISNAD
Chen, Bang-yen. “Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler N-Plane”. International Electronic Journal of Geometry 4/1 (Nisan 2011), 1-14.
JAMA
Chen B-y. Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler n-Plane. Int. Electron. J. Geom. 2011;4:1–14.
MLA
Chen, Bang-yen. “Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler N-Plane”. International Electronic Journal of Geometry, c. 4, sy. 1, 2011, ss. 1-14.
Vancouver
Chen B-y. Classification of Flat Lagrangian H-Umbilical Submanifolds In Para-Kähler n-Plane. Int. Electron. J. Geom. 2011;4(1):1-14.