Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2011, Cilt: 4 Sayı: 1, 32 - 47, 30.04.2011

Öz

Kaynakça

  • [1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203 (Boston, MA: Birkhauser Boston, Inc.) (2002).
  • [2] Boothby, W. M. and Wang, H. C., On contact manifolds, Ann. Math., 68 (1958), 721–734.
  • [3] Cabrerizo, J. L., Ferna´ndez, L. M., Ferna´ndez, M. and Zhen, G., The structure of a class of K-contact manifolds, Acta Math. Hungar., 82 (1999), no. 4, 331–340.
  • [4] Dwivedi, M. K. and Kim, J.-S., On conharmonic curvature tensor in K-contact and Sasakian manifolds, Bull. Malays. Math. Sci. Soc. 34(1) (2011), 171-180.
  • [5] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, 1949. [6] Ishii, Y., On conharmonic transformations, Tensor (N.S.), 7 (1957), 73–80.
  • [7] Ogiue, K., On fibrings of almost contact manifolds, Kodai Math. Sem. Rep., 17 (1965) 53–62.
  • [8] Pokhariyal G. P. and Mishra, R. S., Curvature tensors and their relativistic significance, Yokohama Math. J., 18 (1970), 105–108.
  • [9] Pokhariyal, G. P. and Mishra, R. S., Curvature tensors and their relativistic significance II, Yokohama Math. J., 19 (1971), no. 2, 97–103.
  • [10] Pokhariyal, G. P., Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1982), no. 1, 133–139.
  • [11] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc., 94 (2002), no. 3, 163–166.
  • [12] Tripathi, M. M. and Dwivedi, M. K., The structure of some classes of K-contact manifolds, Proc. Indian Acad. Sci. (Math. Sci.), 118 (2008), no. 3, 371–379.
  • [13] Tripathi, M. M. and Gupta, P., T -curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud. 4 (2011), No. 1, 117-129.
  • [14] Yano, K., Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im- perial Univ. Proc., 16 (1940), 195–200.
  • [15] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
  • [16] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2 (1968), 161–184.
  • [17] Zhen, G., Cabrerizo, J. L., Ferna´ndez, L. M. and Fern´andez, M., On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28 (1997), 725–734.
  • [18] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7 (1992), 5–10.

On T-Curvature Tensor In K-Contact And Sasakian Manifolds

Yıl 2011, Cilt: 4 Sayı: 1, 32 - 47, 30.04.2011

Öz


Kaynakça

  • [1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203 (Boston, MA: Birkhauser Boston, Inc.) (2002).
  • [2] Boothby, W. M. and Wang, H. C., On contact manifolds, Ann. Math., 68 (1958), 721–734.
  • [3] Cabrerizo, J. L., Ferna´ndez, L. M., Ferna´ndez, M. and Zhen, G., The structure of a class of K-contact manifolds, Acta Math. Hungar., 82 (1999), no. 4, 331–340.
  • [4] Dwivedi, M. K. and Kim, J.-S., On conharmonic curvature tensor in K-contact and Sasakian manifolds, Bull. Malays. Math. Sci. Soc. 34(1) (2011), 171-180.
  • [5] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, 1949. [6] Ishii, Y., On conharmonic transformations, Tensor (N.S.), 7 (1957), 73–80.
  • [7] Ogiue, K., On fibrings of almost contact manifolds, Kodai Math. Sem. Rep., 17 (1965) 53–62.
  • [8] Pokhariyal G. P. and Mishra, R. S., Curvature tensors and their relativistic significance, Yokohama Math. J., 18 (1970), 105–108.
  • [9] Pokhariyal, G. P. and Mishra, R. S., Curvature tensors and their relativistic significance II, Yokohama Math. J., 19 (1971), no. 2, 97–103.
  • [10] Pokhariyal, G. P., Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1982), no. 1, 133–139.
  • [11] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc., 94 (2002), no. 3, 163–166.
  • [12] Tripathi, M. M. and Dwivedi, M. K., The structure of some classes of K-contact manifolds, Proc. Indian Acad. Sci. (Math. Sci.), 118 (2008), no. 3, 371–379.
  • [13] Tripathi, M. M. and Gupta, P., T -curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud. 4 (2011), No. 1, 117-129.
  • [14] Yano, K., Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im- perial Univ. Proc., 16 (1940), 195–200.
  • [15] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
  • [16] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2 (1968), 161–184.
  • [17] Zhen, G., Cabrerizo, J. L., Ferna´ndez, L. M. and Fern´andez, M., On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28 (1997), 725–734.
  • [18] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7 (1992), 5–10.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Mukut Mani Tripathi

Punam Gupta Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 4 Sayı: 1

Kaynak Göster

APA Mani Tripathi, M., & Gupta, P. (2011). On T-Curvature Tensor In K-Contact And Sasakian Manifolds. International Electronic Journal of Geometry, 4(1), 32-47.
AMA Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. Nisan 2011;4(1):32-47.
Chicago Mani Tripathi, Mukut, ve Punam Gupta. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry 4, sy. 1 (Nisan 2011): 32-47.
EndNote Mani Tripathi M, Gupta P (01 Nisan 2011) On T-Curvature Tensor In K-Contact And Sasakian Manifolds. International Electronic Journal of Geometry 4 1 32–47.
IEEE M. Mani Tripathi ve P. Gupta, “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”, Int. Electron. J. Geom., c. 4, sy. 1, ss. 32–47, 2011.
ISNAD Mani Tripathi, Mukut - Gupta, Punam. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry 4/1 (Nisan 2011), 32-47.
JAMA Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. 2011;4:32–47.
MLA Mani Tripathi, Mukut ve Punam Gupta. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry, c. 4, sy. 1, 2011, ss. 32-47.
Vancouver Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. 2011;4(1):32-47.