[1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe-
matics, 203 (Boston, MA: Birkhauser Boston, Inc.) (2002).
[2] Boothby, W. M. and Wang, H. C., On contact manifolds, Ann. Math., 68 (1958), 721–734.
[3] Cabrerizo, J. L., Ferna´ndez, L. M., Ferna´ndez, M. and Zhen, G., The structure of a class of
K-contact manifolds, Acta Math. Hungar., 82 (1999), no. 4, 331–340.
[4] Dwivedi, M. K. and Kim, J.-S., On conharmonic curvature tensor in K-contact and Sasakian
manifolds, Bull. Malays. Math. Sci. Soc. 34(1) (2011), 171-180.
[5] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, 1949. [6] Ishii, Y., On
conharmonic transformations, Tensor (N.S.), 7 (1957), 73–80.
[7] Ogiue, K., On fibrings of almost contact manifolds, Kodai Math. Sem. Rep., 17 (1965) 53–62.
[8] Pokhariyal G. P. and Mishra, R. S., Curvature tensors and their relativistic significance,
Yokohama Math. J., 18 (1970), 105–108.
[9] Pokhariyal, G. P. and Mishra, R. S., Curvature tensors and their relativistic significance II,
Yokohama Math. J., 19 (1971), no. 2, 97–103.
[10] Pokhariyal, G. P., Relativistic significance of curvature tensors, Internat. J. Math. Math.
Sci., 5 (1982), no. 1, 133–139.
[11] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta
Math. Soc., 94 (2002), no. 3, 163–166.
[12] Tripathi, M. M. and Dwivedi, M. K., The structure of some classes of K-contact manifolds,
Proc. Indian Acad. Sci. (Math. Sci.), 118 (2008), no. 3, 371–379.
[13] Tripathi, M. M. and Gupta, P., T -curvature tensor on a semi-Riemannian manifold, J. Adv.
Math. Stud. 4 (2011), No. 1, 117-129.
[14] Yano, K., Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im-
perial Univ. Proc., 16 (1940), 195–200.
[15] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics Studies 32,
Princeton University Press, 1953.
[16] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J.
Diff. Geom., 2 (1968), 161–184.
[17] Zhen, G., Cabrerizo, J. L., Ferna´ndez, L. M. and Fern´andez, M., On ξ-conformally flat
contact metric manifolds, Indian J. Pure Appl. Math., 28 (1997), 725–734.
[18] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7 (1992),
5–10.
On T-Curvature Tensor In K-Contact And Sasakian Manifolds
[1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe-
matics, 203 (Boston, MA: Birkhauser Boston, Inc.) (2002).
[2] Boothby, W. M. and Wang, H. C., On contact manifolds, Ann. Math., 68 (1958), 721–734.
[3] Cabrerizo, J. L., Ferna´ndez, L. M., Ferna´ndez, M. and Zhen, G., The structure of a class of
K-contact manifolds, Acta Math. Hungar., 82 (1999), no. 4, 331–340.
[4] Dwivedi, M. K. and Kim, J.-S., On conharmonic curvature tensor in K-contact and Sasakian
manifolds, Bull. Malays. Math. Sci. Soc. 34(1) (2011), 171-180.
[5] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, 1949. [6] Ishii, Y., On
conharmonic transformations, Tensor (N.S.), 7 (1957), 73–80.
[7] Ogiue, K., On fibrings of almost contact manifolds, Kodai Math. Sem. Rep., 17 (1965) 53–62.
[8] Pokhariyal G. P. and Mishra, R. S., Curvature tensors and their relativistic significance,
Yokohama Math. J., 18 (1970), 105–108.
[9] Pokhariyal, G. P. and Mishra, R. S., Curvature tensors and their relativistic significance II,
Yokohama Math. J., 19 (1971), no. 2, 97–103.
[10] Pokhariyal, G. P., Relativistic significance of curvature tensors, Internat. J. Math. Math.
Sci., 5 (1982), no. 1, 133–139.
[11] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta
Math. Soc., 94 (2002), no. 3, 163–166.
[12] Tripathi, M. M. and Dwivedi, M. K., The structure of some classes of K-contact manifolds,
Proc. Indian Acad. Sci. (Math. Sci.), 118 (2008), no. 3, 371–379.
[13] Tripathi, M. M. and Gupta, P., T -curvature tensor on a semi-Riemannian manifold, J. Adv.
Math. Stud. 4 (2011), No. 1, 117-129.
[14] Yano, K., Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im-
perial Univ. Proc., 16 (1940), 195–200.
[15] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics Studies 32,
Princeton University Press, 1953.
[16] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J.
Diff. Geom., 2 (1968), 161–184.
[17] Zhen, G., Cabrerizo, J. L., Ferna´ndez, L. M. and Fern´andez, M., On ξ-conformally flat
contact metric manifolds, Indian J. Pure Appl. Math., 28 (1997), 725–734.
[18] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7 (1992),
5–10.
Mani Tripathi, M., & Gupta, P. (2011). On T-Curvature Tensor In K-Contact And Sasakian Manifolds. International Electronic Journal of Geometry, 4(1), 32-47.
AMA
Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. Nisan 2011;4(1):32-47.
Chicago
Mani Tripathi, Mukut, ve Punam Gupta. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry 4, sy. 1 (Nisan 2011): 32-47.
EndNote
Mani Tripathi M, Gupta P (01 Nisan 2011) On T-Curvature Tensor In K-Contact And Sasakian Manifolds. International Electronic Journal of Geometry 4 1 32–47.
IEEE
M. Mani Tripathi ve P. Gupta, “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”, Int. Electron. J. Geom., c. 4, sy. 1, ss. 32–47, 2011.
ISNAD
Mani Tripathi, Mukut - Gupta, Punam. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry 4/1 (Nisan 2011), 32-47.
JAMA
Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. 2011;4:32–47.
MLA
Mani Tripathi, Mukut ve Punam Gupta. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry, c. 4, sy. 1, 2011, ss. 32-47.
Vancouver
Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. 2011;4(1):32-47.