[1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean
spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
[2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and
Applications, Kluwer Academic Publishers, Dordrecht, 1996.
[3] Bagewadi, C.S. Prakasha, D.G. and Venkatesha., A Study of Ricci quarter-symmetric metric
connection on a Riemannian manifold, Indian J. Math., 50 (2008), no. 3, 607 - 615.
[4] Bagewadi,C.S. Prakasha, D.G. and Venkatesha., Projective curvature tensor on a Kenmotsu
manifold with respect to semi-symmetric metric connection, Stud. Cercet. Stiint. Ser. Mat. Univ.
Bacau., 17 (2007), 21-32.
[5] Biswas, S.C. and De, U.C., Quarter-symmetric metric connection in an SP-Sasakian manifold,
Commun. Fac. Sci. Univ. Ank. Series, 46 (1997), 49 - 56.
[6] Blair, D.E., Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol.
509. Springer-Verlag, Berlin, New-York, 1976.
[7] Boeckx, E. Buecken, P. and Vanhecke,L., ɸ−symmetric contact metric spaces, Glasgow Math.
J., 41 (1999), 409 - 416.
[8] De, U.C. and Pathak, G., On a semi-symmetric metric connection in a Kenmotsu manifold, Bull.
Calcutta Math. Soc., 94 (2002), no. 4, 319-324.
[9] De, U.C., On ɸ−symmetric Kenmotsu manifolds, Int. Electron. J. Geom., 1(2008), no. 1, 33
- 38.
[10] De, U.C. and Sengupta, J., Quarter-symmetric metric connection on a Sasakian manifold, Commun.
Fac. Sci. Univ. Ank. Series,A1, 49 (2000), 7 - 13.
[11] Friedmann, A. and Schouten, J.A., Uber die Geometrie der halbsymmetrischen Ubertragung, Math.
Zeitschr., 21 (1924), 211 - 223.
[12] Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor. N.S., 29
(1975), 293 - 301.
[13] Hayden, H.A., Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27 -
50.
[14] Kenmotsu, K., A class os almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972),
93 - 103.
[15] Mishra, R.S. and Pandey, S.N., On quarter-symmetric metric F-connections, Tensor, N.S., 34
(1980), 1 - 7.
[16] Mondal, Abul Kalam. and De, U.C., Some properties of quarter-symmetric metric connection on a
Sasakian manifold, Bull. Math. Anal. & Appl., 1 (2009), no. 3, 99-108.
[20] Sular, S. Ozgur, C. and De, U.C., Quarter-symmetric metric connection in a Kenmotsu manifold,
SUT Journal of Mathematics, 44(2008), no. 2, 297 - 306.
[1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean
spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
[2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and
Applications, Kluwer Academic Publishers, Dordrecht, 1996.
[3] Bagewadi, C.S. Prakasha, D.G. and Venkatesha., A Study of Ricci quarter-symmetric metric
connection on a Riemannian manifold, Indian J. Math., 50 (2008), no. 3, 607 - 615.
[4] Bagewadi,C.S. Prakasha, D.G. and Venkatesha., Projective curvature tensor on a Kenmotsu
manifold with respect to semi-symmetric metric connection, Stud. Cercet. Stiint. Ser. Mat. Univ.
Bacau., 17 (2007), 21-32.
[5] Biswas, S.C. and De, U.C., Quarter-symmetric metric connection in an SP-Sasakian manifold,
Commun. Fac. Sci. Univ. Ank. Series, 46 (1997), 49 - 56.
[6] Blair, D.E., Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol.
509. Springer-Verlag, Berlin, New-York, 1976.
[7] Boeckx, E. Buecken, P. and Vanhecke,L., ɸ−symmetric contact metric spaces, Glasgow Math.
J., 41 (1999), 409 - 416.
[8] De, U.C. and Pathak, G., On a semi-symmetric metric connection in a Kenmotsu manifold, Bull.
Calcutta Math. Soc., 94 (2002), no. 4, 319-324.
[9] De, U.C., On ɸ−symmetric Kenmotsu manifolds, Int. Electron. J. Geom., 1(2008), no. 1, 33
- 38.
[10] De, U.C. and Sengupta, J., Quarter-symmetric metric connection on a Sasakian manifold, Commun.
Fac. Sci. Univ. Ank. Series,A1, 49 (2000), 7 - 13.
[11] Friedmann, A. and Schouten, J.A., Uber die Geometrie der halbsymmetrischen Ubertragung, Math.
Zeitschr., 21 (1924), 211 - 223.
[12] Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor. N.S., 29
(1975), 293 - 301.
[13] Hayden, H.A., Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27 -
50.
[14] Kenmotsu, K., A class os almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972),
93 - 103.
[15] Mishra, R.S. and Pandey, S.N., On quarter-symmetric metric F-connections, Tensor, N.S., 34
(1980), 1 - 7.
[16] Mondal, Abul Kalam. and De, U.C., Some properties of quarter-symmetric metric connection on a
Sasakian manifold, Bull. Math. Anal. & Appl., 1 (2009), no. 3, 99-108.
[20] Sular, S. Ozgur, C. and De, U.C., Quarter-symmetric metric connection in a Kenmotsu manifold,
SUT Journal of Mathematics, 44(2008), no. 2, 297 - 306.
Prakasha, D. (2011). On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. International Electronic Journal of Geometry, 4(1), 88-96.
AMA
Prakasha D. On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. Nisan 2011;4(1):88-96.
Chicago
Prakasha, D.g. “On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry 4, sy. 1 (Nisan 2011): 88-96.
EndNote
Prakasha D (01 Nisan 2011) On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. International Electronic Journal of Geometry 4 1 88–96.
IEEE
D. Prakasha, “On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection”, Int. Electron. J. Geom., c. 4, sy. 1, ss. 88–96, 2011.
ISNAD
Prakasha, D.g. “On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry 4/1 (Nisan 2011), 88-96.
JAMA
Prakasha D. On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. 2011;4:88–96.
MLA
Prakasha, D.g. “On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry, c. 4, sy. 1, 2011, ss. 88-96.
Vancouver
Prakasha D. On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. 2011;4(1):88-96.