Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2011, Cilt: 4 Sayı: 1, 125 - 128, 30.04.2011

Öz

Kaynakça

  • [1] J. A. Thorpe, Elementary topics in Differential Geometry, Springer-Verlag, Heidelberg, 1979.

Normal Vector As An Eigenvector Of The Weingarten Matrix

Yıl 2011, Cilt: 4 Sayı: 1, 125 - 128, 30.04.2011

Öz


Kaynakça

  • [1] J. A. Thorpe, Elementary topics in Differential Geometry, Springer-Verlag, Heidelberg, 1979.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

N.uday Kiran Bu kişi benim

Ramesh Sharma

M.s. Srinath Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 4 Sayı: 1

Kaynak Göster

APA Kiran, N., Sharma, R., & Srinath, M. (2011). Normal Vector As An Eigenvector Of The Weingarten Matrix. International Electronic Journal of Geometry, 4(1), 125-128.
AMA Kiran N, Sharma R, Srinath M. Normal Vector As An Eigenvector Of The Weingarten Matrix. Int. Electron. J. Geom. Nisan 2011;4(1):125-128.
Chicago Kiran, N.uday, Ramesh Sharma, ve M.s. Srinath. “Normal Vector As An Eigenvector Of The Weingarten Matrix”. International Electronic Journal of Geometry 4, sy. 1 (Nisan 2011): 125-28.
EndNote Kiran N, Sharma R, Srinath M (01 Nisan 2011) Normal Vector As An Eigenvector Of The Weingarten Matrix. International Electronic Journal of Geometry 4 1 125–128.
IEEE N. Kiran, R. Sharma, ve M. Srinath, “Normal Vector As An Eigenvector Of The Weingarten Matrix”, Int. Electron. J. Geom., c. 4, sy. 1, ss. 125–128, 2011.
ISNAD Kiran, N.uday vd. “Normal Vector As An Eigenvector Of The Weingarten Matrix”. International Electronic Journal of Geometry 4/1 (Nisan 2011), 125-128.
JAMA Kiran N, Sharma R, Srinath M. Normal Vector As An Eigenvector Of The Weingarten Matrix. Int. Electron. J. Geom. 2011;4:125–128.
MLA Kiran, N.uday vd. “Normal Vector As An Eigenvector Of The Weingarten Matrix”. International Electronic Journal of Geometry, c. 4, sy. 1, 2011, ss. 125-8.
Vancouver Kiran N, Sharma R, Srinath M. Normal Vector As An Eigenvector Of The Weingarten Matrix. Int. Electron. J. Geom. 2011;4(1):125-8.