Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 17 Sayı: 1, 24 - 33, 23.04.2024
https://doi.org/10.36890/iejg.1404366

Öz

Kaynakça

  • [1] Dede, M., Ekici, C., Goemans,W. and Ünlütürk, Y.: Twisted surfaces with vanishing curvature in Galilean 3-space. Int. J. Geom. Methods Mod.Phys. 15, 1850001 (13 pages)(2018).
  • [2] Duggal, K. L. and Jin, D. H.: Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific Publishing (2007).
  • [3] Goemans,W. andWoestyne, I. Van de: Twisted surfaces in Euclidean and Minkowski 3-space, Pure and Applied Differential Geometry: J. Vander Veken, I. Van de Woestyne, L. Verstraelen and L. Vrancken (Editors), Shaker Verlag Aachen, Germany, 143-151 (2013).
  • [4] Goemans, W. and Woestyne, I. Van de: Constant curvature twisted surfaces in Euclidean and Minkowski 3-space. In: Proceedings of theconference ”Riemannian Geometry and Applications to Engineering and Economics-RIGA”, Bucharest, Romania, 117-130 (2014).
  • [5] Goemans, W. and Woestyne, I. Van de: Twisted surfaces with null rotation axis in Minkowski 3-space. Results. Math. 70, 81-93 (2016).
  • [6] Goemans,W.: Flat double rotattional surfaces in Euclidean and Lorentz-Minkowski 4-space. Publications de L’Institut Mathematique, Nouvellesérie, tome 103(117), 61–68(2018).
  • [7] Gray, A., Abbena, E., Salamon S. (eds.): Modern Differential Geometry of Curves and Surfaces with Mathematica. Chapman & Hall/CRC,Boca Raton (2006).
  • [8] Grbovic, M., Nešovic, E. and Panti´c, A.: On the second kind twisted surfaces in Minkowski 3-space. Int. Electron. J. Geom. 8(2), 9–20(2015).
  • [9] Inoguchi, J. and Lee, S.: Null curves in Minkowski 3-space Int. Electron. J. Geom. 1 (2),40-83(2008).
  • [10] Kazan, A. and Karada˘ g, H.B.:Twisted surfaces in the Pseudo-Galilean space. New Trends Math. Sci. 5, 72–79 (2017).
  • [11] Kuhnel, W.: Differential geometry: curves-surfaces-manifolds, Braunschweig, Wiesbaden, (1999).
  • [12] Lopez, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 7 (1),44-107 (2014).
  • [13] Moore, C. L. E.: Surfaces of rotation in a space of four dimensions. Ann. of Math. 21(2), 81–93 (1919).
  • [14] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, London (1983).
  • [15] Stanilov, G., and Slavova, G.: Classification of some twisted surfaces and power series of such surfaces. Comptes Rendus de l’Academie Bulgaredes Sciences, 59(6),593-600 (2006).
  • [16] Walrave, J.: Curves and surfaces in Minkowski space, Doctoral thesis, K.U. Leuven, Faculty of Science, Leuven (1995).

Twisted Surfaces in Semi-Euclidean $4$-Space with Index $2$

Yıl 2024, Cilt: 17 Sayı: 1, 24 - 33, 23.04.2024
https://doi.org/10.36890/iejg.1404366

Öz

In this paper, we consider the twisted surfaces in semi-Euclidean 4-space with index 2.We classify the twisted surface with respect to their spine curve which are non-null or null curves. So, we study the geometric properties of these surfaces. Also we obtain the family of some special surfaces such as flat surfaces, marginally trapped surfaces.

Kaynakça

  • [1] Dede, M., Ekici, C., Goemans,W. and Ünlütürk, Y.: Twisted surfaces with vanishing curvature in Galilean 3-space. Int. J. Geom. Methods Mod.Phys. 15, 1850001 (13 pages)(2018).
  • [2] Duggal, K. L. and Jin, D. H.: Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific Publishing (2007).
  • [3] Goemans,W. andWoestyne, I. Van de: Twisted surfaces in Euclidean and Minkowski 3-space, Pure and Applied Differential Geometry: J. Vander Veken, I. Van de Woestyne, L. Verstraelen and L. Vrancken (Editors), Shaker Verlag Aachen, Germany, 143-151 (2013).
  • [4] Goemans, W. and Woestyne, I. Van de: Constant curvature twisted surfaces in Euclidean and Minkowski 3-space. In: Proceedings of theconference ”Riemannian Geometry and Applications to Engineering and Economics-RIGA”, Bucharest, Romania, 117-130 (2014).
  • [5] Goemans, W. and Woestyne, I. Van de: Twisted surfaces with null rotation axis in Minkowski 3-space. Results. Math. 70, 81-93 (2016).
  • [6] Goemans,W.: Flat double rotattional surfaces in Euclidean and Lorentz-Minkowski 4-space. Publications de L’Institut Mathematique, Nouvellesérie, tome 103(117), 61–68(2018).
  • [7] Gray, A., Abbena, E., Salamon S. (eds.): Modern Differential Geometry of Curves and Surfaces with Mathematica. Chapman & Hall/CRC,Boca Raton (2006).
  • [8] Grbovic, M., Nešovic, E. and Panti´c, A.: On the second kind twisted surfaces in Minkowski 3-space. Int. Electron. J. Geom. 8(2), 9–20(2015).
  • [9] Inoguchi, J. and Lee, S.: Null curves in Minkowski 3-space Int. Electron. J. Geom. 1 (2),40-83(2008).
  • [10] Kazan, A. and Karada˘ g, H.B.:Twisted surfaces in the Pseudo-Galilean space. New Trends Math. Sci. 5, 72–79 (2017).
  • [11] Kuhnel, W.: Differential geometry: curves-surfaces-manifolds, Braunschweig, Wiesbaden, (1999).
  • [12] Lopez, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 7 (1),44-107 (2014).
  • [13] Moore, C. L. E.: Surfaces of rotation in a space of four dimensions. Ann. of Math. 21(2), 81–93 (1919).
  • [14] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, London (1983).
  • [15] Stanilov, G., and Slavova, G.: Classification of some twisted surfaces and power series of such surfaces. Comptes Rendus de l’Academie Bulgaredes Sciences, 59(6),593-600 (2006).
  • [16] Walrave, J.: Curves and surfaces in Minkowski space, Doctoral thesis, K.U. Leuven, Faculty of Science, Leuven (1995).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Ali Uçum 0000-0003-0172-1531

Kazım İlarslan 0000-0003-1708-280X

Çetin Camcı 0000-0002-0122-559X

Erken Görünüm Tarihi 5 Nisan 2024
Yayımlanma Tarihi 23 Nisan 2024
Gönderilme Tarihi 13 Aralık 2023
Kabul Tarihi 1 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 1

Kaynak Göster

APA Uçum, A., İlarslan, K., & Camcı, Ç. (2024). Twisted Surfaces in Semi-Euclidean $4$-Space with Index $2$. International Electronic Journal of Geometry, 17(1), 24-33. https://doi.org/10.36890/iejg.1404366
AMA Uçum A, İlarslan K, Camcı Ç. Twisted Surfaces in Semi-Euclidean $4$-Space with Index $2$. Int. Electron. J. Geom. Nisan 2024;17(1):24-33. doi:10.36890/iejg.1404366
Chicago Uçum, Ali, Kazım İlarslan, ve Çetin Camcı. “Twisted Surfaces in Semi-Euclidean $4$-Space With Index $2$”. International Electronic Journal of Geometry 17, sy. 1 (Nisan 2024): 24-33. https://doi.org/10.36890/iejg.1404366.
EndNote Uçum A, İlarslan K, Camcı Ç (01 Nisan 2024) Twisted Surfaces in Semi-Euclidean $4$-Space with Index $2$. International Electronic Journal of Geometry 17 1 24–33.
IEEE A. Uçum, K. İlarslan, ve Ç. Camcı, “Twisted Surfaces in Semi-Euclidean $4$-Space with Index $2$”, Int. Electron. J. Geom., c. 17, sy. 1, ss. 24–33, 2024, doi: 10.36890/iejg.1404366.
ISNAD Uçum, Ali vd. “Twisted Surfaces in Semi-Euclidean $4$-Space With Index $2$”. International Electronic Journal of Geometry 17/1 (Nisan 2024), 24-33. https://doi.org/10.36890/iejg.1404366.
JAMA Uçum A, İlarslan K, Camcı Ç. Twisted Surfaces in Semi-Euclidean $4$-Space with Index $2$. Int. Electron. J. Geom. 2024;17:24–33.
MLA Uçum, Ali vd. “Twisted Surfaces in Semi-Euclidean $4$-Space With Index $2$”. International Electronic Journal of Geometry, c. 17, sy. 1, 2024, ss. 24-33, doi:10.36890/iejg.1404366.
Vancouver Uçum A, İlarslan K, Camcı Ç. Twisted Surfaces in Semi-Euclidean $4$-Space with Index $2$. Int. Electron. J. Geom. 2024;17(1):24-33.