Araştırma Makalesi
BibTex RIS Kaynak Göster

Applications of Cantor Set to Fractal Geometry

Yıl 2024, Cilt: 17 Sayı: 2, 712 - 726, 27.10.2024
https://doi.org/10.36890/iejg.1536179

Öz

Fractal geometry is a subfield of mathematics that allows us to explain many of the complexities in nature. Considering this remarkable feature of fractal geometry, this study examines the Cantor set, which is one of the most basic examples of fractal geometry. First of all for the Cantor set, which is one of the basic example and important structure of it. Firstly, generalization of Cantor set in on ${\mathbb{R}}$, ${\mathbb{R}}^2$ and ${\mathbb{R}^3}$ are taken into consideration. Then the given structures are examined over curve and surface theory. This approach enables to given a relationship between fractal geometry and differential geometry. Finally, some examples are established.

Kaynakça

  • [1] Abbena, E., Salamon, S., Gray, A.: Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC, (2017).
  • [2] Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of fractals. Proc.R.Soc. London, A 399, (243-275), (1985) .
  • [3] Brockett, R. W.: Robotic manipulators and the product of exponentials formula. In Mathematical Theory of Networks and Systems: Proceedings of the MTNS-83 International Symposium Beer Sheva, Israel, June 20–24, 1983 (pp. 120-129). Berlin, Heidelberg: Springer Berlin Heidelberg (2005, November).
  • [4] Cantor, G.:Uber unendliche, lineare Punktmannigfaltigkeiten. V. Mathematische Annalen, 21, (1883).
  • [5] Edgar, G.A.: Measure, Topology and Fractal Geometry. Springer-Verlag, Newyork (1990).
  • [6] Islam, J., Islam S.: Generalized Cantor Set and its Fractal Dimension. Bangladesh J. Sci.Ind. Res., 46(4), 499-506, (2011).
  • [7] Islam J., Islam S.: Invariant measures for Iterated Function System of Generalized Cantor Sets. German J. Ad. Math. Sci., 1(2) 41-47, (2016).
  • [8] Islam J., Islam S.: Lebesgue Measure of Generalized Cantor Set. Annals of Pure and App. Math., 10(1), 75-86, (2015).
  • [9] Mandelbrot B.B.: Fractal Geometry of Nature. W. H. Freeman and Company ISBN 0-7167-1186-9, (1983).
  • [10] Murray, R. M., Li, Z., Sastry, S. S.: A mathematical introduction to robotic manipulation. CRC press, (2017).
  • [11] Yüce, S.: Analytical geometry (in Turkish). Pegem Academy Publication, (2023).
  • [12] Yüce, S.: Differential geometry in Euclidean space (in Turkish). Pegem Academy Publication, (2022).
Yıl 2024, Cilt: 17 Sayı: 2, 712 - 726, 27.10.2024
https://doi.org/10.36890/iejg.1536179

Öz

Kaynakça

  • [1] Abbena, E., Salamon, S., Gray, A.: Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC, (2017).
  • [2] Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of fractals. Proc.R.Soc. London, A 399, (243-275), (1985) .
  • [3] Brockett, R. W.: Robotic manipulators and the product of exponentials formula. In Mathematical Theory of Networks and Systems: Proceedings of the MTNS-83 International Symposium Beer Sheva, Israel, June 20–24, 1983 (pp. 120-129). Berlin, Heidelberg: Springer Berlin Heidelberg (2005, November).
  • [4] Cantor, G.:Uber unendliche, lineare Punktmannigfaltigkeiten. V. Mathematische Annalen, 21, (1883).
  • [5] Edgar, G.A.: Measure, Topology and Fractal Geometry. Springer-Verlag, Newyork (1990).
  • [6] Islam, J., Islam S.: Generalized Cantor Set and its Fractal Dimension. Bangladesh J. Sci.Ind. Res., 46(4), 499-506, (2011).
  • [7] Islam J., Islam S.: Invariant measures for Iterated Function System of Generalized Cantor Sets. German J. Ad. Math. Sci., 1(2) 41-47, (2016).
  • [8] Islam J., Islam S.: Lebesgue Measure of Generalized Cantor Set. Annals of Pure and App. Math., 10(1), 75-86, (2015).
  • [9] Mandelbrot B.B.: Fractal Geometry of Nature. W. H. Freeman and Company ISBN 0-7167-1186-9, (1983).
  • [10] Murray, R. M., Li, Z., Sastry, S. S.: A mathematical introduction to robotic manipulation. CRC press, (2017).
  • [11] Yüce, S.: Analytical geometry (in Turkish). Pegem Academy Publication, (2023).
  • [12] Yüce, S.: Differential geometry in Euclidean space (in Turkish). Pegem Academy Publication, (2022).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri, Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

İpek Ebru Karaçay 0000-0002-5289-6457

Salim Yüce 0000-0002-8296-6495

Erken Görünüm Tarihi 6 Ekim 2024
Yayımlanma Tarihi 27 Ekim 2024
Gönderilme Tarihi 20 Ağustos 2024
Kabul Tarihi 4 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 2

Kaynak Göster

APA Karaçay, İ. E., & Yüce, S. (2024). Applications of Cantor Set to Fractal Geometry. International Electronic Journal of Geometry, 17(2), 712-726. https://doi.org/10.36890/iejg.1536179
AMA Karaçay İE, Yüce S. Applications of Cantor Set to Fractal Geometry. Int. Electron. J. Geom. Ekim 2024;17(2):712-726. doi:10.36890/iejg.1536179
Chicago Karaçay, İpek Ebru, ve Salim Yüce. “Applications of Cantor Set to Fractal Geometry”. International Electronic Journal of Geometry 17, sy. 2 (Ekim 2024): 712-26. https://doi.org/10.36890/iejg.1536179.
EndNote Karaçay İE, Yüce S (01 Ekim 2024) Applications of Cantor Set to Fractal Geometry. International Electronic Journal of Geometry 17 2 712–726.
IEEE İ. E. Karaçay ve S. Yüce, “Applications of Cantor Set to Fractal Geometry”, Int. Electron. J. Geom., c. 17, sy. 2, ss. 712–726, 2024, doi: 10.36890/iejg.1536179.
ISNAD Karaçay, İpek Ebru - Yüce, Salim. “Applications of Cantor Set to Fractal Geometry”. International Electronic Journal of Geometry 17/2 (Ekim 2024), 712-726. https://doi.org/10.36890/iejg.1536179.
JAMA Karaçay İE, Yüce S. Applications of Cantor Set to Fractal Geometry. Int. Electron. J. Geom. 2024;17:712–726.
MLA Karaçay, İpek Ebru ve Salim Yüce. “Applications of Cantor Set to Fractal Geometry”. International Electronic Journal of Geometry, c. 17, sy. 2, 2024, ss. 712-26, doi:10.36890/iejg.1536179.
Vancouver Karaçay İE, Yüce S. Applications of Cantor Set to Fractal Geometry. Int. Electron. J. Geom. 2024;17(2):712-26.