Araştırma Makalesi
BibTex RIS Kaynak Göster

EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ

Yıl 2022, Cilt: 6 Sayı: 1, 54 - 61, 30.04.2022
https://doi.org/10.46519/ij3dptdi.1025073

Öz

Küresel ısınma ve diğer insani faktörlerle dünya coğrafyasını tehdit eden en önemli afetlerden biri de kuraklıktır. Kuraklık, suda yaşayan canlılardan başlayarak tüm dünya üzerindeki canlı ekosistemini doğrudan/dolaylı olarak etkilemektedir. Ülkemizde en sık görülen doğal afetlerden biri olan kuraklığın en temel özelliği, zamanla ortaya çıkması ve büyük insan kitlelerini etkilemesidir. Kuraklığın zamana bağlı olarak ortaya çıkması, kuraklığı önceden tahmin edebilme imkanını doğurmaktadır. Kuraklık probleminin tanımlanabilmesi için kuraklık indeksleri kullanılmaktadır. Yağış, sıcaklık, nem gibi meteorolojik parametreleri kullanan bu indeksler ile kuraklık sınıflandırılabilmektedir. Bu çalışmada, Ege Bölgesi için son 13 yıla ait Standart Yağış İndeksi (SPI) verisi incelenmiş ve Dinamik Mod Ayrıştırması (DMA) yöntemi kullanılarak ileriye dönük kuraklık tahminlemesi yapılmıştır. DMA, temelinde Tekil Değer Ayrıştırması olan zamana ve konuma bağlı değişen zaman serileri üzerinde çalıştırılabilen bir makine öğrenmesi metodudur. Makale kapsamında üzerinde çalışılan veri seti, World Weather Online iklim veri portalından elde edilmiştir. Veri seti bir takım ön işlemeden geçirilerek DMA algoritması ile analiz edilmiştir. DMA yönteminin Ege Bölgesi için kuraklık tahminleme başarımı, gerçek değerlerle karşılaştırılmalı olarak sunulmuştur.

Kaynakça

  • 1. Birleşmiş Milletler Çölleşme ile Mücadele Sözleşmesi, Paris, 1996.
  • 2. İnternet: Kuraklık Analizi, https://www.mgm.gov.tr/veridegerlendirme/kurakli k-analizi.aspx?d=yontemsinif#sfB, Kasım 15, 2021.
  • 3. İnternet: Ege Bölgesi Haritası, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid =10723208, Aralık 24, 2021.
  • 4. Pamuk, G., Özgürel, M., Topçuoğlu, K., “Standart Yağış İndisi (SYİ) ile Ege bölgesi Kuraklık Analizi”, Ege Üniv. Ziraat Fak. Dergisi, Cilt 41, Sayı 1, Sayfa 99-106, 2004.
  • 5. Gümüş, V., Başak, A., Oruç, N., “Standartlaştırılmış Yağış indeksi (SYİ) Yöntemi ile Şanlıurfa İstasyonunun Kuraklık Analizi”, HU Muh. Dergisi, Cilt 1, Sayfa 36-44, 2016.
  • 6. Dinç, N., Aydınşakir, K., Işık, M., Büyüktaş, D., “Standartlaştırılmış Yağış İndeksi (SYİ) Yöntemi ile Antalya ili Kuraklık Analizi”, Derim, Cilt 33, Sayı 2, Sayfa 279-298, 2016.
  • 7. Ibrahimi, A. E., Baali, A., “Application of Several Artificial Intelligence Models for Forecasting Meteorological Drought Using the Standardized Precipitation Index in the Saïss Plain (Northern Morocco)”, International Journal of Intelligent Engineering and Systems, Vol. 11, 2018.
  • 8. Oluwatobi, A., Gbenga, O., Oluwafunbi, F., “An Artificial Intelligence Based Drought Predictions In Part Of The Tropics”, Journal of Urban and Environmental Engineering (JUEE), Vol. 11, Issue 2, Pages 165-173, 2017.
  • 9. Malik, A., Kumar, A., Rai, P., Kuriqi, A., “Prediction of Multi-Scalar Standardized Precipitation Index by Using Artificial Intelligence and Regression Models”. Climate; Vol. 9, Issue 2, Pages 28, 2021.
  • 10. Poornima, S., & Pushpalatha, M., “Drought prediction based on SPI and SPEI with Varying Timescales Using LSTM Recurrent Neural Network”. Soft Computing, Pages 1-14, 2019. 11. Zhang, N., Dai, X., Ehsan, M. A., & Deksissa, T., “Development of a Drought Prediction System Based on Long Short-Term Memory Networks (LSTM)”. In International Symposium on Neural Networks, Pages 142-153. Springer, Cham, 2020.
  • 12. Kaur, A., & Sood, S.K., “Deep learning based drought assessment and prediction framework”, Ecol. Informatics, Vol. 57, Pages 101067, 2020.
  • 13. Jiang, W., Luo, J., “An Evaluation of Machine Learning and Deep Learning Models for Drought Prediction using Weather Data”, 2021.
  • 14. İnternet: World Weather Online Weather API, https://www.worldweatheronline.com/developer/, Kasım 15, 2021.
  • 15. McKee, T. B., Doesken, N. J., Kleist, J., “The relationship of Drought Frequency and Duration to Time Scales”. In: Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, Boston, MA, Pages 179- 184, 1993.
  • 16. Bakanoğulları, F., “SPEI ve SYİ İndisleri Kullanılarak İstanbul-Damlıca Deresi Havzasında Kuraklık Şiddetlerinin Analizi”, Toprak Su Dergisi, Cilt 9, Sayı 1, Sayfa 1-10, 2020.
  • 17. Thom, H. C. S., “A Note On The Gamma Distribution. Monthly Weather Review”, Vol. 86, Issue 4, Pages 117–122, 1958.
  • 18. Kutz, J. N., Brunton, S. L., Brunton, B. W., Proctor, J. L., “Dynamic Mode Decomposition: Data-driven modeling of Complex Systems”, SIAM, USA, 2016.
  • 19. Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., Kutz, J. N., “On dynamic mode decomposition: Theory and applications”, Journal of Computational Dynamics, Vol. 1, Issue 2, Pages 391-421, 2014.
  • 20. Kalman, D., “A Singularly Valuable Decomposition: The SVD of a Matrix”, College Mathematics Journal, Vol. 27, Issue 1, Pages 2-23, 1996.

DROUGHT ANALYSIS WITH DYNAMIC MODE DECOMPOSITION FOR THE AEGEAN REGION

Yıl 2022, Cilt: 6 Sayı: 1, 54 - 61, 30.04.2022
https://doi.org/10.46519/ij3dptdi.1025073

Öz

One of the most important disasters threatening world geography with Global Warming and other human factors is drought. Drought directly/indirectly affects the living ecosystem all over the world, starting from aquatic organisms. The most basic feature of drought, which is one of the most common natural disasters in our country, is that it occurs over time and affects large masses of people. The emergence of drought depending on time creates the possibility of predicting drought. Drought indices are used to define the drought problem. Drought can be classified with these indices, which use meteorological parameters such as precipitation, temperature, and humidity. In this study, the Standard Precipitation Index (SPI) data of the last 13 years in the Aegean Region was examined and forward-looking estimation was made using the Dynamic Mode Decomposition (DMD) method. DMD is a machine learning method that is based on Singular Value Decomposition and can be run on time series that vary depending on time and location. The data set studied was obtained from the World Weather Online climate data portal. The data set has been preprocessed and analyzed with the DMD algorithm. The estimation performance of the DMD method for drought analysis of the Aegean Region is presented in comparison with the real values.

Kaynakça

  • 1. Birleşmiş Milletler Çölleşme ile Mücadele Sözleşmesi, Paris, 1996.
  • 2. İnternet: Kuraklık Analizi, https://www.mgm.gov.tr/veridegerlendirme/kurakli k-analizi.aspx?d=yontemsinif#sfB, Kasım 15, 2021.
  • 3. İnternet: Ege Bölgesi Haritası, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid =10723208, Aralık 24, 2021.
  • 4. Pamuk, G., Özgürel, M., Topçuoğlu, K., “Standart Yağış İndisi (SYİ) ile Ege bölgesi Kuraklık Analizi”, Ege Üniv. Ziraat Fak. Dergisi, Cilt 41, Sayı 1, Sayfa 99-106, 2004.
  • 5. Gümüş, V., Başak, A., Oruç, N., “Standartlaştırılmış Yağış indeksi (SYİ) Yöntemi ile Şanlıurfa İstasyonunun Kuraklık Analizi”, HU Muh. Dergisi, Cilt 1, Sayfa 36-44, 2016.
  • 6. Dinç, N., Aydınşakir, K., Işık, M., Büyüktaş, D., “Standartlaştırılmış Yağış İndeksi (SYİ) Yöntemi ile Antalya ili Kuraklık Analizi”, Derim, Cilt 33, Sayı 2, Sayfa 279-298, 2016.
  • 7. Ibrahimi, A. E., Baali, A., “Application of Several Artificial Intelligence Models for Forecasting Meteorological Drought Using the Standardized Precipitation Index in the Saïss Plain (Northern Morocco)”, International Journal of Intelligent Engineering and Systems, Vol. 11, 2018.
  • 8. Oluwatobi, A., Gbenga, O., Oluwafunbi, F., “An Artificial Intelligence Based Drought Predictions In Part Of The Tropics”, Journal of Urban and Environmental Engineering (JUEE), Vol. 11, Issue 2, Pages 165-173, 2017.
  • 9. Malik, A., Kumar, A., Rai, P., Kuriqi, A., “Prediction of Multi-Scalar Standardized Precipitation Index by Using Artificial Intelligence and Regression Models”. Climate; Vol. 9, Issue 2, Pages 28, 2021.
  • 10. Poornima, S., & Pushpalatha, M., “Drought prediction based on SPI and SPEI with Varying Timescales Using LSTM Recurrent Neural Network”. Soft Computing, Pages 1-14, 2019. 11. Zhang, N., Dai, X., Ehsan, M. A., & Deksissa, T., “Development of a Drought Prediction System Based on Long Short-Term Memory Networks (LSTM)”. In International Symposium on Neural Networks, Pages 142-153. Springer, Cham, 2020.
  • 12. Kaur, A., & Sood, S.K., “Deep learning based drought assessment and prediction framework”, Ecol. Informatics, Vol. 57, Pages 101067, 2020.
  • 13. Jiang, W., Luo, J., “An Evaluation of Machine Learning and Deep Learning Models for Drought Prediction using Weather Data”, 2021.
  • 14. İnternet: World Weather Online Weather API, https://www.worldweatheronline.com/developer/, Kasım 15, 2021.
  • 15. McKee, T. B., Doesken, N. J., Kleist, J., “The relationship of Drought Frequency and Duration to Time Scales”. In: Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, Boston, MA, Pages 179- 184, 1993.
  • 16. Bakanoğulları, F., “SPEI ve SYİ İndisleri Kullanılarak İstanbul-Damlıca Deresi Havzasında Kuraklık Şiddetlerinin Analizi”, Toprak Su Dergisi, Cilt 9, Sayı 1, Sayfa 1-10, 2020.
  • 17. Thom, H. C. S., “A Note On The Gamma Distribution. Monthly Weather Review”, Vol. 86, Issue 4, Pages 117–122, 1958.
  • 18. Kutz, J. N., Brunton, S. L., Brunton, B. W., Proctor, J. L., “Dynamic Mode Decomposition: Data-driven modeling of Complex Systems”, SIAM, USA, 2016.
  • 19. Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., Kutz, J. N., “On dynamic mode decomposition: Theory and applications”, Journal of Computational Dynamics, Vol. 1, Issue 2, Pages 391-421, 2014.
  • 20. Kalman, D., “A Singularly Valuable Decomposition: The SVD of a Matrix”, College Mathematics Journal, Vol. 27, Issue 1, Pages 2-23, 1996.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka, Yazılım Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gamze Yüksel 0000-0003-3578-2762

Hakan Sökün 0000-0002-0371-8830

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 18 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 1

Kaynak Göster

APA Yüksel, G., & Sökün, H. (2022). EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ. International Journal of 3D Printing Technologies and Digital Industry, 6(1), 54-61. https://doi.org/10.46519/ij3dptdi.1025073
AMA Yüksel G, Sökün H. EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ. IJ3DPTDI. Nisan 2022;6(1):54-61. doi:10.46519/ij3dptdi.1025073
Chicago Yüksel, Gamze, ve Hakan Sökün. “EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ”. International Journal of 3D Printing Technologies and Digital Industry 6, sy. 1 (Nisan 2022): 54-61. https://doi.org/10.46519/ij3dptdi.1025073.
EndNote Yüksel G, Sökün H (01 Nisan 2022) EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ. International Journal of 3D Printing Technologies and Digital Industry 6 1 54–61.
IEEE G. Yüksel ve H. Sökün, “EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ”, IJ3DPTDI, c. 6, sy. 1, ss. 54–61, 2022, doi: 10.46519/ij3dptdi.1025073.
ISNAD Yüksel, Gamze - Sökün, Hakan. “EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ”. International Journal of 3D Printing Technologies and Digital Industry 6/1 (Nisan 2022), 54-61. https://doi.org/10.46519/ij3dptdi.1025073.
JAMA Yüksel G, Sökün H. EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ. IJ3DPTDI. 2022;6:54–61.
MLA Yüksel, Gamze ve Hakan Sökün. “EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ”. International Journal of 3D Printing Technologies and Digital Industry, c. 6, sy. 1, 2022, ss. 54-61, doi:10.46519/ij3dptdi.1025073.
Vancouver Yüksel G, Sökün H. EGE BÖLGESİ İÇİN DİNAMİK MOD AYRIŞTIRMASI İLE KURAKLIK ANALİZİ. IJ3DPTDI. 2022;6(1):54-61.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.