Araştırma Makalesi
BibTex RIS Kaynak Göster

MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL

Yıl 2022, Cilt: 6 Sayı: 3, 548 - 555, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1210836

Öz

Wire-arc additive manufacturing (WAAM) is a promising method to produce many functional components in different industries. In this method, the welding wires from the feedstock are melted by arc discharge and deposited layer by layer. Other welding wires having different chemical compositions can also be added to the top of the previously deposited layer by replacing the feed wire from the stock to produce bimetallic components. This study investigated the feasibility of using robotic wire arc additive manufacturing technology to produce a bimetallic cutting tool. The bimetallic cutting tool was produced by depositing MSG 6 GZ-60 hard-facing welding wire on top of the austenitic stainless-steel wall produced with ER 316LSi solid wire. The cutting-based equipment requires an increased abrasion resistance with the combination of ductility to provide adequate tool life and performance. Thus, detailed microstructural analysis and hardness tests were conducted to understand the general microstructural characteristic of the manufactured cutting tool, including interfaces between two different materials.

Destekleyen Kurum

TUBİTAK

Proje Numarası

5220023

Teşekkür

This study has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the scope of the University-Industry Cooperation Support Program with project number 5220023. The authors also wish to thank staff members of the Gedik Welding-Türkiye for their technical support during the manufacturing of the WAAM part. In addition, this study has been presented at 6th International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry 2022 in 23-23 November 2022.

Kaynakça

  • 1. Chen, X., Han, J., Wang, J., Cai, Y., Zhang, G., Lu, L., Xin, Y., Tian, Y., “A functionally graded material from TC4 to 316L stainless steel fabricated by double-wire + arc additive manufacturing”, Materials Letters, Vol. 300, Pages 130-141, 2021.
  • 2. Wu, B., Qiu, Z., Pan, Z., Carpenter, K., Wang ,T., Ding, D., Duin, S.V., Li, H., “Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy”, Journal of Materials Science & Technology, Vol. 52, Pages 226–234, 2020.
  • 3. Ahsan, M.R.U., Fan, X., Seo, G.J., Ji, C., Noakes, M., Nycz, A., Liaw, P.K., Kim, D.B., “Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625”, Journal of Materials Science & Technology, Vol. 74, Pages 176–188, 2021.
  • 4. Sasikumar, R., Kannan, A.R., Kumar, S.M., Pramod, R., Kumar, N.P., Shanmugam, N.S., Palguna, Y., Sivankalai, S., “Wire arc additive manufacturing of functionally graded material with SS 316L and IN625: Microstructural and mechanical perspectives”, CIRP Journal of Manufacturing Science and Technology, Vol. 38, Pages 230–242, 2022.
  • 5. Ahsan, M.R.U., Tanvir, A.N.M., Ross, T., Elsawy, A., Oh, M.S., Kim, D.B., “Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire arc additive manufacturing”, Rapid Prototyping Journal, Vol. 3, Pages, 519–530, 2020.
  • 6. Çam, G., “Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)”, Materials Today: Proceedings, Vol. 62, Pages 77-85, 2022 7. 8. Güler, S., Serindağ, H.T., Çam, G., “Wire arc additive manufacturing (WAAM): Recent developments and prospects”, Mühendis ve Makine (Engineer and Machinery), Vol. 63, Pages 82-116, 2022
  • 9. Zhang, C., Chen, F., Huang, Z., Jia, M., Chen, G., Ye, Y., Lin, Y., Liu, W., Chen, B., Shen, Q., Zhang, L., Lavernia, E.J., “Additive manufacturing of functionally graded materials: A review”, Materials Science and Engineering : A, Vol. 764, 138209, 2019.
  • 10. Zhang, W.Q., Zhang, B.P., Xiao, H.F., Zhu, H.H., “Interfacial phenomena and microstructure of copper/steel bimetal structure produced by a new hybrid additive manufacturing process combining selective laser melting and directed energy deposition”, Materials Science Forum, Vol. 1054, Pages 31–36, 2022.
  • 11. Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., Norrish, J., “A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement”, Journal of Manufacturing Processes, Vol. 35, Pages 127-139, 2018.
  • 12. Gürol, U., Dilibal, S., Turgut, B., Koçak, M., “Characterization of a low-alloy steel component produced with wire arc additive manufacturing process using metal-cored wire”, Materials Testing, Vol. 64, Issue 6, Pages 755-767, 2022.
  • 13. Chaturvedi, M., Scutelnicu, E., Rusu, C.C., Mistodie, L.R., Mihailescu, D., Subbiah A.V., “Wire arc additive manufacturing: Review on recent fndings and challenges in industrial applications and materials characterization”, Metals, Vol. 11, Issue 6, Issue 939, Pages 1-39, 2021.
  • 14. Motwani, A., Kumar, A., Puri, Y., Lautre N.K., “Mechanical characteristics and microstructural investigation of CMT deposited bimetallic SS316LSi‑IN625 thin wall for WAAM”, Welding in the World, 2022.
  • 15. Gürol, U., Turgut, B., Güleçyüz, N., Dilibal, S., Koçak, M. “Development of multi-material components via robotic wire arc additive manufacturing” International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 3, Pages 721 – 729, 2021.
  • 16. Jin, W., Zhang, C., Jin, S., Tian, Y., Wellmann, D., Liu, W., “Wire arc additive manufacturing of stainless steels: A review”, Applied Sciences, Vol. 10, Issue 5, 1563, 2020.
  • 17. Jafari, D., Vaneker, T.H.J., Gibson, I., “Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts”, Materials & Desing, Vol. 202, 109471, 2021.
  • 18. DIN 8555-1, “Filler metals used for surfacing; filler wires, filler rods, wire electrodes, covered electrodes; designation; technical delivery conditions” November 1983.
  • 19. Wang, J.F., “Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding”, Materials Science and Engineering A, Vol. 676, Pages 395-405, 2016.
  • 20. Wu, B., Pan, Z., Chen, G., Ding, D., Yuan, L., Cuiuri, D., Li, H., “Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling”, Science and Technology of Welding and Joining, Vol. 24, Issue 5, Pages 484–494, 2019.
  • 21. Jorge, V.L., Teixeira, F.R., Scotti, A., “Pyrometrical interlayer temperature measurement in WAAM of thin wall: strategies, limitations and functionality”, Metals, Vol. 12, Issue 765, 1-18, 2022.
  • 22. Bandyopadhyay, A., Zhang, Y., Onuike, B., “Additive manufacturing of bimetallic structures”, Virtual and Physical Prototyping, Vol. 17, Issue 2, Pages 256-294, 2022.
  • 23. Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., Fino, P., “Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review”, Applied Sciences, Vol. 10, Issue 9, 3310, 2020.
  • 24. Rodrigues, T.A., Escobar ,J.D., Shen, J., Duarte, V.R., Ribamar, G.G., Avila, J.A., Maawad, E., Schell, N., Santos, T.G., Oliveira, J.P., “Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysis”, Additive Manufacturing, Vol. 48, Part B, 102428, 2021.
  • 25. Hardfacing Welding Wires And Rods, “600G”, https://gedikwelding.com/en/product-detail/600-g, October 27, 2022.
  • 26. Han, S., Zhang, Z., Liu, Z., Zhang, H., Xue, D., “Investigation of the microstructure and mechanical performance of bimetal components fabricated using CMT-based wire arc additive manufacturing”, Materials Research Express, Vol. 7, 116525, 2020.
Yıl 2022, Cilt: 6 Sayı: 3, 548 - 555, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1210836

Öz

Proje Numarası

5220023

Kaynakça

  • 1. Chen, X., Han, J., Wang, J., Cai, Y., Zhang, G., Lu, L., Xin, Y., Tian, Y., “A functionally graded material from TC4 to 316L stainless steel fabricated by double-wire + arc additive manufacturing”, Materials Letters, Vol. 300, Pages 130-141, 2021.
  • 2. Wu, B., Qiu, Z., Pan, Z., Carpenter, K., Wang ,T., Ding, D., Duin, S.V., Li, H., “Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy”, Journal of Materials Science & Technology, Vol. 52, Pages 226–234, 2020.
  • 3. Ahsan, M.R.U., Fan, X., Seo, G.J., Ji, C., Noakes, M., Nycz, A., Liaw, P.K., Kim, D.B., “Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625”, Journal of Materials Science & Technology, Vol. 74, Pages 176–188, 2021.
  • 4. Sasikumar, R., Kannan, A.R., Kumar, S.M., Pramod, R., Kumar, N.P., Shanmugam, N.S., Palguna, Y., Sivankalai, S., “Wire arc additive manufacturing of functionally graded material with SS 316L and IN625: Microstructural and mechanical perspectives”, CIRP Journal of Manufacturing Science and Technology, Vol. 38, Pages 230–242, 2022.
  • 5. Ahsan, M.R.U., Tanvir, A.N.M., Ross, T., Elsawy, A., Oh, M.S., Kim, D.B., “Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire arc additive manufacturing”, Rapid Prototyping Journal, Vol. 3, Pages, 519–530, 2020.
  • 6. Çam, G., “Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)”, Materials Today: Proceedings, Vol. 62, Pages 77-85, 2022 7. 8. Güler, S., Serindağ, H.T., Çam, G., “Wire arc additive manufacturing (WAAM): Recent developments and prospects”, Mühendis ve Makine (Engineer and Machinery), Vol. 63, Pages 82-116, 2022
  • 9. Zhang, C., Chen, F., Huang, Z., Jia, M., Chen, G., Ye, Y., Lin, Y., Liu, W., Chen, B., Shen, Q., Zhang, L., Lavernia, E.J., “Additive manufacturing of functionally graded materials: A review”, Materials Science and Engineering : A, Vol. 764, 138209, 2019.
  • 10. Zhang, W.Q., Zhang, B.P., Xiao, H.F., Zhu, H.H., “Interfacial phenomena and microstructure of copper/steel bimetal structure produced by a new hybrid additive manufacturing process combining selective laser melting and directed energy deposition”, Materials Science Forum, Vol. 1054, Pages 31–36, 2022.
  • 11. Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., Norrish, J., “A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement”, Journal of Manufacturing Processes, Vol. 35, Pages 127-139, 2018.
  • 12. Gürol, U., Dilibal, S., Turgut, B., Koçak, M., “Characterization of a low-alloy steel component produced with wire arc additive manufacturing process using metal-cored wire”, Materials Testing, Vol. 64, Issue 6, Pages 755-767, 2022.
  • 13. Chaturvedi, M., Scutelnicu, E., Rusu, C.C., Mistodie, L.R., Mihailescu, D., Subbiah A.V., “Wire arc additive manufacturing: Review on recent fndings and challenges in industrial applications and materials characterization”, Metals, Vol. 11, Issue 6, Issue 939, Pages 1-39, 2021.
  • 14. Motwani, A., Kumar, A., Puri, Y., Lautre N.K., “Mechanical characteristics and microstructural investigation of CMT deposited bimetallic SS316LSi‑IN625 thin wall for WAAM”, Welding in the World, 2022.
  • 15. Gürol, U., Turgut, B., Güleçyüz, N., Dilibal, S., Koçak, M. “Development of multi-material components via robotic wire arc additive manufacturing” International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 3, Pages 721 – 729, 2021.
  • 16. Jin, W., Zhang, C., Jin, S., Tian, Y., Wellmann, D., Liu, W., “Wire arc additive manufacturing of stainless steels: A review”, Applied Sciences, Vol. 10, Issue 5, 1563, 2020.
  • 17. Jafari, D., Vaneker, T.H.J., Gibson, I., “Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts”, Materials & Desing, Vol. 202, 109471, 2021.
  • 18. DIN 8555-1, “Filler metals used for surfacing; filler wires, filler rods, wire electrodes, covered electrodes; designation; technical delivery conditions” November 1983.
  • 19. Wang, J.F., “Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding”, Materials Science and Engineering A, Vol. 676, Pages 395-405, 2016.
  • 20. Wu, B., Pan, Z., Chen, G., Ding, D., Yuan, L., Cuiuri, D., Li, H., “Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling”, Science and Technology of Welding and Joining, Vol. 24, Issue 5, Pages 484–494, 2019.
  • 21. Jorge, V.L., Teixeira, F.R., Scotti, A., “Pyrometrical interlayer temperature measurement in WAAM of thin wall: strategies, limitations and functionality”, Metals, Vol. 12, Issue 765, 1-18, 2022.
  • 22. Bandyopadhyay, A., Zhang, Y., Onuike, B., “Additive manufacturing of bimetallic structures”, Virtual and Physical Prototyping, Vol. 17, Issue 2, Pages 256-294, 2022.
  • 23. Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., Fino, P., “Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review”, Applied Sciences, Vol. 10, Issue 9, 3310, 2020.
  • 24. Rodrigues, T.A., Escobar ,J.D., Shen, J., Duarte, V.R., Ribamar, G.G., Avila, J.A., Maawad, E., Schell, N., Santos, T.G., Oliveira, J.P., “Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysis”, Additive Manufacturing, Vol. 48, Part B, 102428, 2021.
  • 25. Hardfacing Welding Wires And Rods, “600G”, https://gedikwelding.com/en/product-detail/600-g, October 27, 2022.
  • 26. Han, S., Zhang, Z., Liu, Z., Zhang, H., Xue, D., “Investigation of the microstructure and mechanical performance of bimetal components fabricated using CMT-based wire arc additive manufacturing”, Materials Research Express, Vol. 7, 116525, 2020.
Yıl 2022, Cilt: 6 Sayı: 3, 548 - 555, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1210836

Öz

Proje Numarası

5220023

Kaynakça

  • 1. Chen, X., Han, J., Wang, J., Cai, Y., Zhang, G., Lu, L., Xin, Y., Tian, Y., “A functionally graded material from TC4 to 316L stainless steel fabricated by double-wire + arc additive manufacturing”, Materials Letters, Vol. 300, Pages 130-141, 2021.
  • 2. Wu, B., Qiu, Z., Pan, Z., Carpenter, K., Wang ,T., Ding, D., Duin, S.V., Li, H., “Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy”, Journal of Materials Science & Technology, Vol. 52, Pages 226–234, 2020.
  • 3. Ahsan, M.R.U., Fan, X., Seo, G.J., Ji, C., Noakes, M., Nycz, A., Liaw, P.K., Kim, D.B., “Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625”, Journal of Materials Science & Technology, Vol. 74, Pages 176–188, 2021.
  • 4. Sasikumar, R., Kannan, A.R., Kumar, S.M., Pramod, R., Kumar, N.P., Shanmugam, N.S., Palguna, Y., Sivankalai, S., “Wire arc additive manufacturing of functionally graded material with SS 316L and IN625: Microstructural and mechanical perspectives”, CIRP Journal of Manufacturing Science and Technology, Vol. 38, Pages 230–242, 2022.
  • 5. Ahsan, M.R.U., Tanvir, A.N.M., Ross, T., Elsawy, A., Oh, M.S., Kim, D.B., “Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire arc additive manufacturing”, Rapid Prototyping Journal, Vol. 3, Pages, 519–530, 2020.
  • 6. Çam, G., “Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)”, Materials Today: Proceedings, Vol. 62, Pages 77-85, 2022 7. 8. Güler, S., Serindağ, H.T., Çam, G., “Wire arc additive manufacturing (WAAM): Recent developments and prospects”, Mühendis ve Makine (Engineer and Machinery), Vol. 63, Pages 82-116, 2022
  • 9. Zhang, C., Chen, F., Huang, Z., Jia, M., Chen, G., Ye, Y., Lin, Y., Liu, W., Chen, B., Shen, Q., Zhang, L., Lavernia, E.J., “Additive manufacturing of functionally graded materials: A review”, Materials Science and Engineering : A, Vol. 764, 138209, 2019.
  • 10. Zhang, W.Q., Zhang, B.P., Xiao, H.F., Zhu, H.H., “Interfacial phenomena and microstructure of copper/steel bimetal structure produced by a new hybrid additive manufacturing process combining selective laser melting and directed energy deposition”, Materials Science Forum, Vol. 1054, Pages 31–36, 2022.
  • 11. Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., Norrish, J., “A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement”, Journal of Manufacturing Processes, Vol. 35, Pages 127-139, 2018.
  • 12. Gürol, U., Dilibal, S., Turgut, B., Koçak, M., “Characterization of a low-alloy steel component produced with wire arc additive manufacturing process using metal-cored wire”, Materials Testing, Vol. 64, Issue 6, Pages 755-767, 2022.
  • 13. Chaturvedi, M., Scutelnicu, E., Rusu, C.C., Mistodie, L.R., Mihailescu, D., Subbiah A.V., “Wire arc additive manufacturing: Review on recent fndings and challenges in industrial applications and materials characterization”, Metals, Vol. 11, Issue 6, Issue 939, Pages 1-39, 2021.
  • 14. Motwani, A., Kumar, A., Puri, Y., Lautre N.K., “Mechanical characteristics and microstructural investigation of CMT deposited bimetallic SS316LSi‑IN625 thin wall for WAAM”, Welding in the World, 2022.
  • 15. Gürol, U., Turgut, B., Güleçyüz, N., Dilibal, S., Koçak, M. “Development of multi-material components via robotic wire arc additive manufacturing” International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 3, Pages 721 – 729, 2021.
  • 16. Jin, W., Zhang, C., Jin, S., Tian, Y., Wellmann, D., Liu, W., “Wire arc additive manufacturing of stainless steels: A review”, Applied Sciences, Vol. 10, Issue 5, 1563, 2020.
  • 17. Jafari, D., Vaneker, T.H.J., Gibson, I., “Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts”, Materials & Desing, Vol. 202, 109471, 2021.
  • 18. DIN 8555-1, “Filler metals used for surfacing; filler wires, filler rods, wire electrodes, covered electrodes; designation; technical delivery conditions” November 1983.
  • 19. Wang, J.F., “Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding”, Materials Science and Engineering A, Vol. 676, Pages 395-405, 2016.
  • 20. Wu, B., Pan, Z., Chen, G., Ding, D., Yuan, L., Cuiuri, D., Li, H., “Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling”, Science and Technology of Welding and Joining, Vol. 24, Issue 5, Pages 484–494, 2019.
  • 21. Jorge, V.L., Teixeira, F.R., Scotti, A., “Pyrometrical interlayer temperature measurement in WAAM of thin wall: strategies, limitations and functionality”, Metals, Vol. 12, Issue 765, 1-18, 2022.
  • 22. Bandyopadhyay, A., Zhang, Y., Onuike, B., “Additive manufacturing of bimetallic structures”, Virtual and Physical Prototyping, Vol. 17, Issue 2, Pages 256-294, 2022.
  • 23. Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., Fino, P., “Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review”, Applied Sciences, Vol. 10, Issue 9, 3310, 2020.
  • 24. Rodrigues, T.A., Escobar ,J.D., Shen, J., Duarte, V.R., Ribamar, G.G., Avila, J.A., Maawad, E., Schell, N., Santos, T.G., Oliveira, J.P., “Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysis”, Additive Manufacturing, Vol. 48, Part B, 102428, 2021.
  • 25. Hardfacing Welding Wires And Rods, “600G”, https://gedikwelding.com/en/product-detail/600-g, October 27, 2022.
  • 26. Han, S., Zhang, Z., Liu, Z., Zhang, H., Xue, D., “Investigation of the microstructure and mechanical performance of bimetal components fabricated using CMT-based wire arc additive manufacturing”, Materials Research Express, Vol. 7, 116525, 2020.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller, Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Uğur Gürol 0000-0002-3205-7226

Savaş Dilibal 0000-0003-4777-7995

Batuhan Turgut 0000-0001-6930-2478

Hakan Baykal 0000-0002-8007-408X

Hülya Kümek 0000-0002-0839-9090

Mustafa Koçak 0000-0001-9193-7277

Proje Numarası 5220023
Erken Görünüm Tarihi 14 Ekim 2022
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 28 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 3

Kaynak Göster

APA Gürol, U., Dilibal, S., Turgut, B., Baykal, H., vd. (2022). MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 548-555. https://doi.org/10.46519/ij3dptdi.1210836
AMA Gürol U, Dilibal S, Turgut B, Baykal H, Kümek H, Koçak M. MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL. IJ3DPTDI. Aralık 2022;6(3):548-555. doi:10.46519/ij3dptdi.1210836
Chicago Gürol, Uğur, Savaş Dilibal, Batuhan Turgut, Hakan Baykal, Hülya Kümek, ve Mustafa Koçak. “MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL”. International Journal of 3D Printing Technologies and Digital Industry 6, sy. 3 (Aralık 2022): 548-55. https://doi.org/10.46519/ij3dptdi.1210836.
EndNote Gürol U, Dilibal S, Turgut B, Baykal H, Kümek H, Koçak M (01 Aralık 2022) MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL. International Journal of 3D Printing Technologies and Digital Industry 6 3 548–555.
IEEE U. Gürol, S. Dilibal, B. Turgut, H. Baykal, H. Kümek, ve M. Koçak, “MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL”, IJ3DPTDI, c. 6, sy. 3, ss. 548–555, 2022, doi: 10.46519/ij3dptdi.1210836.
ISNAD Gürol, Uğur vd. “MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL”. International Journal of 3D Printing Technologies and Digital Industry 6/3 (Aralık 2022), 548-555. https://doi.org/10.46519/ij3dptdi.1210836.
JAMA Gürol U, Dilibal S, Turgut B, Baykal H, Kümek H, Koçak M. MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL. IJ3DPTDI. 2022;6:548–555.
MLA Gürol, Uğur vd. “MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL”. International Journal of 3D Printing Technologies and Digital Industry, c. 6, sy. 3, 2022, ss. 548-55, doi:10.46519/ij3dptdi.1210836.
Vancouver Gürol U, Dilibal S, Turgut B, Baykal H, Kümek H, Koçak M. MANUFACTURING AND CHARACTERIZATON OF WAAM-BASED BIMETALLIC CUTTING TOOL. IJ3DPTDI. 2022;6(3):548-55.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.