Iron metal is the most widely used metal type. This metal, which is used in countless sectors, is processed in different ways and turned into steel. Since steel has a brittle structure compared to iron, defects may occur in the plates during the rolling process. Detection of these defects at the production stage is of great importance in terms of commercial and safety. Machine learning methods can be used in such problems for fast and high accuracy detection. For this purpose, using a dataset obtained from stainless steel surface defects in this study, classification processes were carried out to detect defects with four different machine learning methods. Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM) and Random Forest (RF) algorithms were used for classification processes. The highest classification accuracy was obtained from the 79.44% RF model. Correlation analysis was performed in order to analyze the effects of the features in the dataset on the classification results. It is thought that the classification accuracy of the proposed models is satisfactory for this challenging problem, but needs to be upgraded.
Artificial intelligence Detection Steel Machine learning Defect
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Research Article |
Yazarlar | |
Erken Görünüm Tarihi | 17 Mart 2023 |
Yayımlanma Tarihi | 31 Mart 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 11 Sayı: 1 |