Araştırma Makalesi
BibTex RIS Kaynak Göster

Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending

Yıl 2024, Cilt: 8 Sayı: 3, 322 - 331, 30.09.2024
https://doi.org/10.30939/ijastech..1448615

Öz

Drag link is one of the important parts in steering system used in automotive. The ball joint, ball joint housing, and pipe compose the drag link. In this study, finite element analysis is used to simulate the deformation process. St 52 steel material is used. A yield criterion, an associated flow rule, and Chaboche’s kinematic hardening rule were used in the finite ele-ment simulations of processes involving high plastic deformation. A series of low-cycle ten-sile/compression tests is performed to determine the parameters of Chaboche’s kinematic hardening rule. The success of the simulation results depends on the more accuracy of the finding parameters. Some optimization methods are used in the calibration progression of these parameters and the results are compared. For the purpose of optimization, the angle of the pipe after bending is set as 16.6 as soon as possible. As design variables, the Chaboche kinematic hardening rule parameters were adjusted. Consequently, calibrated parameters were obtained for St52 pipe bending. By analysing and verifying the candidate points, opti-mization methods are compared. The optimum parameters are determined as YS=350 MPa, C=2984.3 MPa, and =100 while their initial values are YS=373.806 MPa, C=4016 MPa, and =94. It is concluded that the optimization process gives more consistency in the bending process.

Teşekkür

This work was supported by Ditaş Doğan Yedek Parça Imalat ve Teknik A.Ş. We would like to thank them for their support. We would like to thank Dr. Mehmet Seyhan, Ka-radeniz Technical University for providing the opportunity to use Ansys® software for simulations for educational purpos-es. We are very grateful to the reviewers for their valuable comments, which have been utilized to improve the quality of the paper.

Kaynakça

  • [1]. Ortego A, Calvo G, Valero A, Iglesias-Embil M, Valero A, Villacampa M. Assessment of strategic raw materials in the automobile sector. Resources, Conservation and Recycling. 2020; 161:104968. https://doi.org/10.1016/j.resconrec.2020.104968
  • [2]. Prager W. Recent developments in the mathematical theory of plasticity. Journal of Applied Physics, 1949; 20(3):235-241. https://doi.org/10.1063/1.1698348
  • [3]. Ziegler H. A modification of Prager's hardening rule. Quarter-ly of Applied Mathematics, 1959; 17(1):55-66. https://doi.org/10.1090/qam/104405
  • [4]. Armstrong PJ and Frederick CO. A mathematical representa-tion of the multiaxial Bauschinger effect. Materials at High Temperatures, 2007. 24(1) p. 1-26. https://doi.org/10.3184/096034007X207589
  • [5]. Chaboche JL. Time independent constitutive theories for cy-clic plasticity. International Journal of Plasticity, 1986; 2(2): 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  • [6]. Chaboche JL. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 1989; 5(3): 247-302. https://doi.org/10.1016/0749-6419(89)90015-6
  • [7]. Mahdi MS, Mohammed AI. The effect of bending angle and radius on wall thickness variation according to a geometric ra-tio in tube bending. AIP Conf. Proc. 19 August 2024; 3105 (1): 020024. https://doi.org/10.1063/5.0212722
  • [8]. Duan W, Joshi S. Structural behavior of large-scale triangular and trapezoidal threaded steel tie rods in assembly using finite element analysis. Engineering Failure Analysis. 2013;34:150-65. https://doi.org/10.1016/j.engfailanal.2013.07.024
  • [9]. Falah AH, Alfares MA, Elkholy AH. Failure investigation of a tie rod end of an automobile steering system. Engineering Failure Analysis. 2007; 14(5): 895-902. https://doi.org/10.1016/j.engfailanal.2006.11.045
  • [10]. Lubarda VA. Elastoplasticity theory. 2002, CRC Press, 56-68. https://doi.org/10.1201/9781420040784
  • [11]. Aretz H, Groche P, Schindler K. Modeling of sheet metal forming processes with kinematic hardening. International Journal of Plasticity, 2002, 18(4), 453-475. https://doi.org/10.1007/s12289-008-0035-y
  • [12]. Lemaitre J, Chaboche JL, Mechanics of solid materials. 1990, Cambridge University Press, 86-67. https://doi.org/10.1017/CBO9781139167970
  • [13]. Zhu X, Zhou S. A review of material constitutive models and their application in crashworthiness simulations. Materials, 2019; 12(19), 3141. https://doi.org/10.1201/9781003143031-16
  • [14]. Yoshida F, Uemori T. A constitutive model of cyclic plastici-ty for metals. International Journal of Plasticity, 1988; 4(4), 257-272. https://doi.org/10.1016/S0749-6419(99)00058-3
  • [15]. Xia QX, Xu T, Wei GM, Ye FY. Numerical Simulation and Experimental Research on Multi-position Progressive Stamp-ing Process of Automotive Structural Part. Applied Mechanics and Materials. 2013; 271:1366-71. https://doi.org/10.4028/www.scientific.net/AMM.271-272.13
  • [16]. Zhang SY, Leotoing L, Guines D, Thuillier S. Calibration of material parameters of anisotropic yield criterion with conven-tional tests and biaxial test. Key Engineering Materials. 2013;554:2111-7. https://doi.org/10.4028/www.scientific.net/KEM.554-557.2111
Yıl 2024, Cilt: 8 Sayı: 3, 322 - 331, 30.09.2024
https://doi.org/10.30939/ijastech..1448615

Öz

Kaynakça

  • [1]. Ortego A, Calvo G, Valero A, Iglesias-Embil M, Valero A, Villacampa M. Assessment of strategic raw materials in the automobile sector. Resources, Conservation and Recycling. 2020; 161:104968. https://doi.org/10.1016/j.resconrec.2020.104968
  • [2]. Prager W. Recent developments in the mathematical theory of plasticity. Journal of Applied Physics, 1949; 20(3):235-241. https://doi.org/10.1063/1.1698348
  • [3]. Ziegler H. A modification of Prager's hardening rule. Quarter-ly of Applied Mathematics, 1959; 17(1):55-66. https://doi.org/10.1090/qam/104405
  • [4]. Armstrong PJ and Frederick CO. A mathematical representa-tion of the multiaxial Bauschinger effect. Materials at High Temperatures, 2007. 24(1) p. 1-26. https://doi.org/10.3184/096034007X207589
  • [5]. Chaboche JL. Time independent constitutive theories for cy-clic plasticity. International Journal of Plasticity, 1986; 2(2): 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  • [6]. Chaboche JL. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 1989; 5(3): 247-302. https://doi.org/10.1016/0749-6419(89)90015-6
  • [7]. Mahdi MS, Mohammed AI. The effect of bending angle and radius on wall thickness variation according to a geometric ra-tio in tube bending. AIP Conf. Proc. 19 August 2024; 3105 (1): 020024. https://doi.org/10.1063/5.0212722
  • [8]. Duan W, Joshi S. Structural behavior of large-scale triangular and trapezoidal threaded steel tie rods in assembly using finite element analysis. Engineering Failure Analysis. 2013;34:150-65. https://doi.org/10.1016/j.engfailanal.2013.07.024
  • [9]. Falah AH, Alfares MA, Elkholy AH. Failure investigation of a tie rod end of an automobile steering system. Engineering Failure Analysis. 2007; 14(5): 895-902. https://doi.org/10.1016/j.engfailanal.2006.11.045
  • [10]. Lubarda VA. Elastoplasticity theory. 2002, CRC Press, 56-68. https://doi.org/10.1201/9781420040784
  • [11]. Aretz H, Groche P, Schindler K. Modeling of sheet metal forming processes with kinematic hardening. International Journal of Plasticity, 2002, 18(4), 453-475. https://doi.org/10.1007/s12289-008-0035-y
  • [12]. Lemaitre J, Chaboche JL, Mechanics of solid materials. 1990, Cambridge University Press, 86-67. https://doi.org/10.1017/CBO9781139167970
  • [13]. Zhu X, Zhou S. A review of material constitutive models and their application in crashworthiness simulations. Materials, 2019; 12(19), 3141. https://doi.org/10.1201/9781003143031-16
  • [14]. Yoshida F, Uemori T. A constitutive model of cyclic plastici-ty for metals. International Journal of Plasticity, 1988; 4(4), 257-272. https://doi.org/10.1016/S0749-6419(99)00058-3
  • [15]. Xia QX, Xu T, Wei GM, Ye FY. Numerical Simulation and Experimental Research on Multi-position Progressive Stamp-ing Process of Automotive Structural Part. Applied Mechanics and Materials. 2013; 271:1366-71. https://doi.org/10.4028/www.scientific.net/AMM.271-272.13
  • [16]. Zhang SY, Leotoing L, Guines D, Thuillier S. Calibration of material parameters of anisotropic yield criterion with conven-tional tests and biaxial test. Key Engineering Materials. 2013;554:2111-7. https://doi.org/10.4028/www.scientific.net/KEM.554-557.2111
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer), Otomotiv Mühendisliği ve Malzemeleri, Taşıt Tekniği ve Dinamiği
Bölüm Articles
Yazarlar

Ozan Akkoyun 0009-0008-4887-1506

İlyas Kacar 0000-0002-5887-8807

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 7 Mart 2024
Kabul Tarihi 26 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 3

Kaynak Göster

APA Akkoyun, O., & Kacar, İ. (2024). Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending. International Journal of Automotive Science And Technology, 8(3), 322-331. https://doi.org/10.30939/ijastech..1448615
AMA Akkoyun O, Kacar İ. Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending. ijastech. Eylül 2024;8(3):322-331. doi:10.30939/ijastech.1448615
Chicago Akkoyun, Ozan, ve İlyas Kacar. “Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending”. International Journal of Automotive Science And Technology 8, sy. 3 (Eylül 2024): 322-31. https://doi.org/10.30939/ijastech. 1448615.
EndNote Akkoyun O, Kacar İ (01 Eylül 2024) Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending. International Journal of Automotive Science And Technology 8 3 322–331.
IEEE O. Akkoyun ve İ. Kacar, “Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending”, ijastech, c. 8, sy. 3, ss. 322–331, 2024, doi: 10.30939/ijastech..1448615.
ISNAD Akkoyun, Ozan - Kacar, İlyas. “Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending”. International Journal of Automotive Science And Technology 8/3 (Eylül 2024), 322-331. https://doi.org/10.30939/ijastech. 1448615.
JAMA Akkoyun O, Kacar İ. Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending. ijastech. 2024;8:322–331.
MLA Akkoyun, Ozan ve İlyas Kacar. “Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending”. International Journal of Automotive Science And Technology, c. 8, sy. 3, 2024, ss. 322-31, doi:10.30939/ijastech. 1448615.
Vancouver Akkoyun O, Kacar İ. Parameter Calibration of Chaboche Kinematic Hardening Model by Inverse Analysis Using Different Optimization Methods in the Case of Pipe Bending. ijastech. 2024;8(3):322-31.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png