Öz
This study aims to examine the effects of mixture item response theory (IRT) models on item parameter estimation and classification accuracy under different conditions. The manipulated variables of the simulation study are set as mixture IRT models (Rasch, 2PL, 3PL); sample size (600, 1000); the number of items (10, 30); the number of latent classes (2, 3); missing data type (complete, missing at random (MAR) and missing not at random (MNAR)), and the percentage of missing data (10%, 20%). Data were generated for each of the three mixture IRT models using the code written in R program. MplusAutomation package, which provides the automation of R and Mplus program, was used to analyze the data. The mean RMSE values for item difficulty, item discrimination, and guessing parameter estimation were determined. The mean RMSE values as to the Mixture Rasch model were found to be lower than those of the Mixture 2PL and Mixture 3PL models. Percentages of classification accuracy were also computed. It was noted that the Mixture Rasch model with 30 items, 2 classes, 1000 sample size, and complete data conditions had the highest classification accuracy percentage. Additionally, a factorial ANOVA was used to evaluate each factor's main effects and interaction effects.