Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye'deki Bazı Doğa ve Kültürü Yapılan Yenebilir Mantarların Antioksidan Enzim Aktiviteleri

Yıl 2020, Cilt: 6 Sayı: 2, 202 - 206, 21.07.2020
https://doi.org/10.24180/ijaws.749512

Öz

Bu çalışmada; Türkiye’nin farklı yörelerinden temin edilen 15 doğa ve kültür mantar türüne [Boletus edulis Bull.: Fr, (Ayı mantarı), Craterellus cornucopioides (L.) Pers. (Borazan mantarı), Lactarius deliciosus (L. ex Fr.) S.F.Gray (Kanlıca mantarı), Laetiporus sulphureus (Bull.: Fr.) Murr. (Kükürt mantarı), Marasmius oreades (Bolt. ex Fr.) Fr. (Cincile mantarı), Morchella conica Pers. (Kuzugöbeği mantarı), Ramaria botrytis (Pers.: Fr.) Ricken (Pürpürüm mantarı), Tricholoma terreum (Schaeff.: Fr.) P. Kumm. (Karakız mantarı), Hericium erinaceus (Bull.: Fr.) Pers. (Aslan yelesi mantarı), Lentinula edodes (Berk.) Pegler (Meşe mantarı), Ganoderma lucidum (Curt.: Fr.) P. Karst. (Reishi mantarı) ve Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. (1-4) (Kayın mantarı)] ait örnekte antioksidan enzim kapasitesini belirlemek için fenilalanin amonyum liyaz (PAL) enzim aktivitesi, askorbat peroksidaz (APX), peroksidaz (POD) ve süperoksid dismutaz (SOD) aktivite değişimleri ve nitrat, β-karoten ile likopen düzeyleri araştırılmıştır. Sonuç olarak, farklı yörelerden temin edilen mantar örnekleri içerisinde en yüksek β-karoten ve likopen miktarı H. erinaceus türünde belirlenmiştir. β-karoten miktarının en düşük olduğu tür P. ostreatus-2 iken en düşük likopen miktarı P. ostreatus-1 türünde saptanmıştır. Nitrat içeriği bakımından zengin olan türler; C. cornucopioides ve P. ostreatus-4 olarak tespit edilmiştir. P. ostreatus-3, diğer mantar örneklerine kıyasla nitrat bakımından en fakir tür olarak belirlenmiştir. Mantarların PAL aktivitesi 5.863 ve 8.893 EU mg-1 protein arasında değişmiştir. En yüksek APX değerinin P. ostreatus-4 türüne, en düşük değerin ise H. erinaceus türüne ait olduğu bulunmuştur. Mantar türleri arasında en yüksek ve en düşük POD değerleri sırasıyla H. erinaceus ve B. edulis türlerinde saptanmıştır. SOD değeri en yüksek tür C. cornucopioides, en düşük tür ise P. ostreatus-3 olarak belirlenmiştir. 

Kaynakça

  • Atri, N. S., Sharma, Y. P., & Kumar, S. M. (2019). Wild edible mushrooms of northwest Himalaya: Their nutritional, nutraceutical, and sociobiological aspects. In T. Satyanarayana, S. Kumar Das & B. N. Johri (Eds.), Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore.
  • Ayaz, F. A., Torun, H., Özel, A., Col, M., Duran, C., Sesli, E., &, Colak, A. (2011). Nutritional value of some wild edible mushrooms from the Black Sea region (Turkey). Turkish Journal of Biochemistry, 36(3), 213-221.
  • Ayaz, M., Junaid, M., Ullah, F., Sadiq, A., Ovais, M., Ahmad, W., & Zeb, A. (2016). Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. BMC Complementary and Alternative Medicine, 16(1), 502.
  • Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008a). Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. Journal of Agricultural and Food Chemistry, 56(10), 3856-3862.
  • Barros, L., Cruz, T., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008b). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 46, 2742-2747.
  • Barros, L., Duenas, M., Ferreira, I. C. F. R., Baptista, P., & Santos-Buelga, C. (2009). Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushroom species. Food and Chemical Toxicology, 47, 1076-1079.
  • Boa, E. (2004). Wild Edible Fungi: A Global Overview of Their Use and Importance to People. Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Bobics, R., Krüzselyi, D., & Vetter, J. (2016). Nitrate content in a collection of higher mushrooms. Journal of the Science of Food and Agriculture, 30(2), 430-36.
  • Bulam, S., Üstün, N. Ş., & Pekşen, A. (2018a). The most popular edible wild mushrooms in Vezirköprü district of Samsun province. Turkish Journal of Agriculture - Food Science and Technology, 6(2), 189-194.
  • Bulam, S., Üstün, N. Ş., & Pekşen, A. (2018b). Edible wild mushroom antioxidants. International Eurasian Congress on Natural Nutrition & Healthy Life (NATURAL 2018), Ankara, Turkey.
  • Buntgen, U., Latorre, J., Egli, S., & Martínez-Peña, F. (2017). Socio-economic, scientific, and political benefits of mycotourism. Ecosphere, 8(7), 1870.
  • Cai, C., Xu, C.J., Li, X., Ferguson, I., & Chen, K. S. (2006). Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biology and Technology, 40, 163-169.
  • Cakmak, I. (1994). Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. Journal of Experimental Botany, 45, 1259-1266.
  • Cataldo, D. A., Harcon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6, 71-80.
  • Chance, B., & Maehly, C. (1955). Assay of catalase and peroxidases. Methods in Enzymology, 2(11), 764-775.
  • Chen, H., Zhang, J., Hao, H., Feng, Z., Chen, M., Wang, H., & Ye, M. (2017). Hydrogen‑rich water increases postharvest quality by enhancing antioxidant capacity in Hypsizygus marmoreus. AMB Express, 7(1), 1-10.
  • Dembitsky, V. M., Terent’ev, A. O., & Levitsky, D. O. (2010). Amino and fatty acids of wild edible mushrooms of the genus Boletus. Records of Natural Products, 4(4), 218-223.
  • Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G., & Nicholson, R. L. (1984). Phenylalanine ammonia lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiological Plant Pathology, 25, 111-123.
  • Georgescu, A. A., Danet A. F., Radulescu, C., Stihi, C., Dulama, I. D., & Chelarescu, D. E. (2016). Determination of several elements in edible mushrooms using ICP-MS. Romanian Journal of Physics, 61(5-6), 1087-1097.
  • Hussein, J. M., Tibuhwa, D. D., Mshandete, A. M., & Kivaisi, A. K. (2015). Antioxidant properties of seven wild edible mushrooms from Tanzania. African Journal of Food Science, 9(9), 471e9.
  • Hyun, M. W., Yun, Y. H., Kim, J. Y., & Kim, S. H. (2011). Fungal and plant phenylalanine ammonia-lyase. Mycobiology, 39(4), 257-265.
  • Jayakumar, T., Thomas, P.A. & Geraldine, P. (2009). In vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science and Emerging Technologies, 10, 228-234.
  • Lelley, J. (2005). Modern applications and marketing of useful mushrooms. International Journal of Medicinal Mushrooms, 7(1-2), 39-48.
  • Martinez de Aragón, J., Riera, P., Giergiczny, M., & Colinas, C. (2011). Value of wild mushroom picking as an environmental service. Forest Policy and Economics,13(6), 419-424.
  • Martinez-Espinosa, R. M., Cole, J. A., Richardson, D. J., & Watmough, N. J. (2011). Enzymology and ecology of the nitrogen cycle. Biochemical Society Transactions, 39, 175-178.
  • Mueller, L., & Boehm, V. (2011). Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules, 16, 1055-1069.
  • Nagata, M., & Yamashita, L. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish, 39, 925-928.
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-spesific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867-880.
  • Pekşen, A., Bulam, S., & Üstün, N. Ş. (2016). Edible wild mushrooms sold in Giresun local markets. 1st International Mediterranean Science and Engineering Congress (IMSEC 2016), Çukurova University Congress Center, Adana, Turkey.
  • Ramkumar, L., Ramanathan, T., Thirunavukkarasu, P., & Arivuselvan, N. (2010). Antioxidant and radical scavenging activity of nine edible mushroom extract. International Journal of Pharmacology, 6(6), 50-953.
  • Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55, 207-216.
  • Robaszkiewicz, A., Bartosz, G., Lawrynowicz, M., & Soszynski, M. (2010). The role of polyphenols, β-carotene, and lycopene in the antioxidative action of the extract of dried edible mushrooms. Journal of Nutrition and Metabolism, 11, 173-274.
  • Sun, L., Liu, Q., Bao, C., & Fan, J. (2017). Comparison of free total amino acid compositions and their functional classifications in 13 wild edible mushrooms. Molecules, 22, 350.
  • Teklit, G. A. (2015). Chemical composition and nutritional value of the most widely used mushrooms cultivated in Mekelle Tigray Ethiopia. Journal of Nutrition & Food Sciences, 5, 5.
  • Turfan, N., Ayan, S., Akın, Ş. S., & Akın, E. (2019). Nutritional and antioxidant variability of some wild and cultivated edible mushrooms from Kastamonu rural areas. Turkish Journal of Agriculture-Food Science and Technology, 7(sp3), 11-16.
  • Turfan, N., Pekşen, A., Kibar, B., & Ünal, S. (2018). Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Scientiarum Polonorum Hortorum Cultus, 17(3), 57-72.
  • Üstün, N. Ş., Bulam, S., & Pekşen, A. (2018). The use of mushrooms and their extracts and compounds in functional foods and nutraceuticals. 1. International Technology Sciences and Design Symposium (ITESDES), Giresun University, Giresun, Turkey.
  • Wasser, S. P. (2014). Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomedical Journal, 37, 345-356.
  • Yun, Y. H., Koo, J. S., Kim, S. H., & Kong, W. S. (2015). Cloning and expression analysis of phenylalanine ammonia-lyase gene in the mycelium and fruit body of the edible mushroom Flammulina velutipes. Mycobiology, 43(3), 327-332.
  • Zürcher, M., Niggli, U. A., Steck, A., & Pfander, H. (1997). Oxidation of carotenoids- I. Dihydrooxepin derivatives as products of oxidation of canthaxanthin and β-carotene. Tetrahedron Letters, 38, 7853-7856.

Antioxidant Enzyme Activities of Some Wild and Cultivated Edible Mushrooms in Turkey

Yıl 2020, Cilt: 6 Sayı: 2, 202 - 206, 21.07.2020
https://doi.org/10.24180/ijaws.749512

Öz

In this study; wild and cultivated edible mushrooms [Boletus edulis Bull.: Fr, Craterellus cornucopioides (L.) Pers., Lactarius deliciosus (L. ex Fr.) S.F.Gray, Laetiporus sulphureus (Bull.: Fr.) Murr., Marasmius oreades (Bolt. ex Fr.) Fr., Morchella conica Pers., Ramaria botrytis (Pers.: Fr.) Ricken, Tricholoma terreum (Schaeff.: Fr.) P. Kumm., Hericium erinaceus (Bull.: Fr.) Pers., Lentinula edodes (Berk.) Pegler, Ganoderma lucidum (Curt.: Fr.) P. Karst., and Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. (1-4)] were obtained from different locations in Turkey. Phenylalanine ammonia lyase (PAL) enzyme activity, ascorbate peroxidase (APX), peroxidase (POD), and superoxide dismutase (SOD) activity changes and nitrate, β-carotene and lycopene levels were investigated in 15 samples to determine antioxidant enzyme capacity. As a result of the study, the highest amount of β-carotene and lycopene were determined in H. erinaceus. P. ostreatus-2 had the lowest amount of β-carotene, whereas Pleurotus ostreatus-1 had the lowest amount of lycopene. Species rich in nitrate content were C. cornucopioides and P. ostreatus-4. P. ostreatus-3 was the poorest species in terms of nitrate compared to other mushroom samples. PAL activity of mushrooms varied between 5.863 and 8.893 EU mg-1 protein. For APX values, P. ostreatus-4 had the highest value, while H. erinaceus species had the lowest value. Among mushroom species, the highest and the lowest POD values were determined in H. erinaceus and B. edulis, respectively. C. cornucopioides had the highest and P. ostreatus-3 had the lowest SOD values.

Kaynakça

  • Atri, N. S., Sharma, Y. P., & Kumar, S. M. (2019). Wild edible mushrooms of northwest Himalaya: Their nutritional, nutraceutical, and sociobiological aspects. In T. Satyanarayana, S. Kumar Das & B. N. Johri (Eds.), Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore.
  • Ayaz, F. A., Torun, H., Özel, A., Col, M., Duran, C., Sesli, E., &, Colak, A. (2011). Nutritional value of some wild edible mushrooms from the Black Sea region (Turkey). Turkish Journal of Biochemistry, 36(3), 213-221.
  • Ayaz, M., Junaid, M., Ullah, F., Sadiq, A., Ovais, M., Ahmad, W., & Zeb, A. (2016). Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. BMC Complementary and Alternative Medicine, 16(1), 502.
  • Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008a). Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. Journal of Agricultural and Food Chemistry, 56(10), 3856-3862.
  • Barros, L., Cruz, T., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008b). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 46, 2742-2747.
  • Barros, L., Duenas, M., Ferreira, I. C. F. R., Baptista, P., & Santos-Buelga, C. (2009). Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushroom species. Food and Chemical Toxicology, 47, 1076-1079.
  • Boa, E. (2004). Wild Edible Fungi: A Global Overview of Their Use and Importance to People. Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Bobics, R., Krüzselyi, D., & Vetter, J. (2016). Nitrate content in a collection of higher mushrooms. Journal of the Science of Food and Agriculture, 30(2), 430-36.
  • Bulam, S., Üstün, N. Ş., & Pekşen, A. (2018a). The most popular edible wild mushrooms in Vezirköprü district of Samsun province. Turkish Journal of Agriculture - Food Science and Technology, 6(2), 189-194.
  • Bulam, S., Üstün, N. Ş., & Pekşen, A. (2018b). Edible wild mushroom antioxidants. International Eurasian Congress on Natural Nutrition & Healthy Life (NATURAL 2018), Ankara, Turkey.
  • Buntgen, U., Latorre, J., Egli, S., & Martínez-Peña, F. (2017). Socio-economic, scientific, and political benefits of mycotourism. Ecosphere, 8(7), 1870.
  • Cai, C., Xu, C.J., Li, X., Ferguson, I., & Chen, K. S. (2006). Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biology and Technology, 40, 163-169.
  • Cakmak, I. (1994). Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. Journal of Experimental Botany, 45, 1259-1266.
  • Cataldo, D. A., Harcon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6, 71-80.
  • Chance, B., & Maehly, C. (1955). Assay of catalase and peroxidases. Methods in Enzymology, 2(11), 764-775.
  • Chen, H., Zhang, J., Hao, H., Feng, Z., Chen, M., Wang, H., & Ye, M. (2017). Hydrogen‑rich water increases postharvest quality by enhancing antioxidant capacity in Hypsizygus marmoreus. AMB Express, 7(1), 1-10.
  • Dembitsky, V. M., Terent’ev, A. O., & Levitsky, D. O. (2010). Amino and fatty acids of wild edible mushrooms of the genus Boletus. Records of Natural Products, 4(4), 218-223.
  • Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G., & Nicholson, R. L. (1984). Phenylalanine ammonia lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiological Plant Pathology, 25, 111-123.
  • Georgescu, A. A., Danet A. F., Radulescu, C., Stihi, C., Dulama, I. D., & Chelarescu, D. E. (2016). Determination of several elements in edible mushrooms using ICP-MS. Romanian Journal of Physics, 61(5-6), 1087-1097.
  • Hussein, J. M., Tibuhwa, D. D., Mshandete, A. M., & Kivaisi, A. K. (2015). Antioxidant properties of seven wild edible mushrooms from Tanzania. African Journal of Food Science, 9(9), 471e9.
  • Hyun, M. W., Yun, Y. H., Kim, J. Y., & Kim, S. H. (2011). Fungal and plant phenylalanine ammonia-lyase. Mycobiology, 39(4), 257-265.
  • Jayakumar, T., Thomas, P.A. & Geraldine, P. (2009). In vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science and Emerging Technologies, 10, 228-234.
  • Lelley, J. (2005). Modern applications and marketing of useful mushrooms. International Journal of Medicinal Mushrooms, 7(1-2), 39-48.
  • Martinez de Aragón, J., Riera, P., Giergiczny, M., & Colinas, C. (2011). Value of wild mushroom picking as an environmental service. Forest Policy and Economics,13(6), 419-424.
  • Martinez-Espinosa, R. M., Cole, J. A., Richardson, D. J., & Watmough, N. J. (2011). Enzymology and ecology of the nitrogen cycle. Biochemical Society Transactions, 39, 175-178.
  • Mueller, L., & Boehm, V. (2011). Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules, 16, 1055-1069.
  • Nagata, M., & Yamashita, L. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish, 39, 925-928.
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-spesific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867-880.
  • Pekşen, A., Bulam, S., & Üstün, N. Ş. (2016). Edible wild mushrooms sold in Giresun local markets. 1st International Mediterranean Science and Engineering Congress (IMSEC 2016), Çukurova University Congress Center, Adana, Turkey.
  • Ramkumar, L., Ramanathan, T., Thirunavukkarasu, P., & Arivuselvan, N. (2010). Antioxidant and radical scavenging activity of nine edible mushroom extract. International Journal of Pharmacology, 6(6), 50-953.
  • Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55, 207-216.
  • Robaszkiewicz, A., Bartosz, G., Lawrynowicz, M., & Soszynski, M. (2010). The role of polyphenols, β-carotene, and lycopene in the antioxidative action of the extract of dried edible mushrooms. Journal of Nutrition and Metabolism, 11, 173-274.
  • Sun, L., Liu, Q., Bao, C., & Fan, J. (2017). Comparison of free total amino acid compositions and their functional classifications in 13 wild edible mushrooms. Molecules, 22, 350.
  • Teklit, G. A. (2015). Chemical composition and nutritional value of the most widely used mushrooms cultivated in Mekelle Tigray Ethiopia. Journal of Nutrition & Food Sciences, 5, 5.
  • Turfan, N., Ayan, S., Akın, Ş. S., & Akın, E. (2019). Nutritional and antioxidant variability of some wild and cultivated edible mushrooms from Kastamonu rural areas. Turkish Journal of Agriculture-Food Science and Technology, 7(sp3), 11-16.
  • Turfan, N., Pekşen, A., Kibar, B., & Ünal, S. (2018). Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Scientiarum Polonorum Hortorum Cultus, 17(3), 57-72.
  • Üstün, N. Ş., Bulam, S., & Pekşen, A. (2018). The use of mushrooms and their extracts and compounds in functional foods and nutraceuticals. 1. International Technology Sciences and Design Symposium (ITESDES), Giresun University, Giresun, Turkey.
  • Wasser, S. P. (2014). Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomedical Journal, 37, 345-356.
  • Yun, Y. H., Koo, J. S., Kim, S. H., & Kong, W. S. (2015). Cloning and expression analysis of phenylalanine ammonia-lyase gene in the mycelium and fruit body of the edible mushroom Flammulina velutipes. Mycobiology, 43(3), 327-332.
  • Zürcher, M., Niggli, U. A., Steck, A., & Pfander, H. (1997). Oxidation of carotenoids- I. Dihydrooxepin derivatives as products of oxidation of canthaxanthin and β-carotene. Tetrahedron Letters, 38, 7853-7856.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Bahçe Bitkileri
Yazarlar

Nezahat Turfan 0000-0002-5753-0390

Sezgin Ayan 0000-0001-8077-0512

Aysun Pekşen 0000-0002-9601-5041

Şeyma Selin Akın 0000-0001-8353-6422

Yayımlanma Tarihi 21 Temmuz 2020
Gönderilme Tarihi 9 Haziran 2020
Kabul Tarihi 13 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 6 Sayı: 2

Kaynak Göster

APA Turfan, N., Ayan, S., Pekşen, A., Akın, Ş. S. (2020). Antioxidant Enzyme Activities of Some Wild and Cultivated Edible Mushrooms in Turkey. International Journal of Agricultural and Wildlife Sciences, 6(2), 202-206. https://doi.org/10.24180/ijaws.749512

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a