Düzeltme
BibTex RIS Kaynak Göster

Düzeltme: Salisilik Asitin Farklı Uygulama Şekli ve Dozlarının Bakla (Vicia faba L.)’da Tuzluluk Stresi ve Bitki Gelişimi Üzerine Etkisi

Yıl 2024, Cilt: 10 Sayı: 3, 479 - 479, 24.12.2024
Bu makalenin ilk hali 25 Ağustos 2024 tarihinde yayımlandı. https://dergipark.org.tr/tr/pub/ijaws/issue/86594/1436876

Düzeltme Notu

Bu düzeltme metni, Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi’nin 2024 yılı 10. cilt, 2. sayısında 10.24180/ijaws.1436876 DOI numarasıyla yayımlanan Uçar, Ö., Soysal, S., Erman, M., Çığ, F., Önder S.’ in “Salisilik Asitin Farklı Uygulama Şekli ve Dozlarının Bakla (Vicia faba L.)’da Tuzluluk Stresi ve Bitki Gelişimi Üzerine Etkisi” başlıklı makalede, Teşekkür bölümünde yer alan “Proje Numarası”nın yazarlar tarafından sehven hatalı olması nedeniyle yazılmıştır. YAPILAN DÜZELTME ACKNOWLEDGMENT This study was supported by Siirt University as Scientific Research Project No. 2021-SİÜZİR-19. We would like to thank Siirt University Scientific Research Projects Coordination Office for their support.

Öz

Bu çalışma, salisilik asidin farklı uygulama şekli ve dozlarının tuz stresi altında yetiştirilen baklanın ilk gelişim dönemlerindeki etkilerinin belirlenmesi amacıyla yapılmıştır. Deneme Siirt Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü laboratuvarında bitki yetiştirme kabininde yürütülmüştür. Deneme süresince çalışma yapılan ortamın sıcaklığı 25±3 °C’de tutulmuştur. Bitkiler 16 saat boyunca aydınlık, 8 saat boyunca karanlık periyotta yetiştirilmiştir. Bitkilere 3 farklı tuz konsantrasyonu (0, 75 ve 150 mM NaCl) ve 3 farklı salisilik asit (SA) konsantrasyonu (0, 0.5 ve 1.0 mM SA) topraktan ve yapraktan olacak şekillerde uygulanmıştır. Ön uygulama olarak ise 0.5 mM SA ve hidropriming yapılmıştır. Çalışma sonuçlarına göre, çimlenme oranı, çimlenme indeksi, ortalama çimlenme süresi, gövde uzunluğu, kök uzunluğu, gövde yaş ağırlığı, gövde kuru ağırlığı, kök yaş ağırlığı, kök kuru ağırlığı ve toplam klorofil içeriği sırasıyla %63.33-86.67, 0.97-2.51, 3.60-6.28 gün, 36.11-39.47 cm, 27.50-30.57 cm, 4.404-6.623 g, 0.473-0.555 g, 2.813-3.400 g, 2.813-3.400 g, 0.300-0.396 g ve %41.0-50.6 aralığında değişim göstermiştir. Çimlenme özellikleri açısından tuzluluk seviyelerinin önemli bir etkisinin olmadığı gözlemlenirken hidropriming uygulamasının çimlenme özelliklerini iyileştirdiği, ancak salisilik asit uygulamasının olumsuz etki gösterdiği tespit edilmiştir. Fakat salisilik asit uygulamalarının fide gelişimini ve kuru madde birikimini artırdığı, tuzluluk stresi altında bitki gelişimini teşvik ettiği gözlemlenmiştir. Sonuç olarak, bakla bitkisinde tuzluluk stresinin iyileştirilmesi ve bitki gelişiminin teşvik edilmesi için yapraktan 0.5 mM salisilik asit uygulamasının faydalı bir uygulama olduğu gözlemlenmiştir.

Destekleyen Kurum

Siirt Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2021-SİÜZİR-047

Teşekkür

This study was supported by Siirt University as Scientific Research Project No. 2021-SİÜZİR-047. We would like to thank Siirt University Scientific Research Projects Coordination Office for their support.

Kaynakça

  • Açıkbaş, S., & Özyazıcı, M. A. (2022, December 29-30). Effect of salicylic acid seed pre-application process on germination and seedling development of vetch (Vicia ervilia L.) plant. [Paper presentation]. 11th International Conference on Applied Science, Diyarbakır, Türkiye.
  • Akıncı, S. & Çalışkan, Ü. (2010). The effect of lead on seed germination and tolerance levels in some summer vegetables. Ecology, 19(74), https://doi.org/164-172. 10.5053/ekoloji.2010.7420
  • Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. Journal of the Saudi Society of Agricultural Sciences, 17, 1-8. https://doi.org/10.1016/j.jssas.2015.10.002
  • Anonymous (2020). T.R. Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Aegean Agricultural Research Institute Directorate. https://arastirma.tarimorman.gov.tr/etae/Menu/68/Tescilli-Cesit-Katalogu-2018. [Access date: 21.09.2020]
  • Anonymous (2022). Turkish Statistical Institute (TURKSTAT). Broad bean production data. https://www.tuik.gov.tr. [Access date: 20.09.2022]
  • Azooz, M. M., Youssef, A. M., & Ahmad, P. (2011). Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International Journal of Plant Physiology and Biochemistry, 3(14), 253-264. https://doi.org/10.5897/IJPPB11.052
  • Baran, A., & Doğan, M. (2014). Physiological effect of salicylic acid in salt-stressed soybean (Glycine max L.). Süleyman Demirel University Institute of Science and Technology Journal, 18(1), 78-84.
  • Baran, M. F., Durgut, M. R., Kayhan, İ. E., Kurşun, İ., Aydın, B., & Bayhan, Y. (2014). II. Technical and economical determination of different tillage methods that can be applied in silage corn production (2nd Year). Tekirdağ Faculty of Agriculture Journal, 11(2), 11-20.
  • Ceritoğlu, M., & Erman, M. (2020). Mitigation of salinity stress on chickpea germination by salicylic acid priming. International Journal of Agricultural and Wildlife Sciences, 6(3), 582-591. https://doi.org/10.24180/ijaws.774969
  • Çoban, S. S. (2007). The effect of salicylic acid on drought-related physiological parameters and mineral nutrition in chickpea genotypes [Master's Thesis-Ankara University]
  • Eberhard, S., Doubrava, N., Marta, V., Mohnen, D., Southwick, A., Darviell, A., & Albersheim. P. (1989). Pectic cell wall fragments regulate tobacco thin-cell layer explant morphogenesis. Plant Cell, 1, 747-755. https://doi.org/10.1105/tpc.1.8.747.
  • Ekmekçi, E., Apan, M., & Kara, T. (2005). Effect of salinity on plant development. 19 Mayıs University Faculty of Agriculture Journal, 20(3), 118-125.
  • Ellis, R. H., & Roberts, E. H. (1980). Towards a Rational Basis for Seed Testing Seed Quality, in: Hebblethwaitei, P. (Ed), Seed Production, Butterworths.
  • Flowers, T. J., & Yeo, A. R. (1995). Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology, 22, 875-884. https://doi.org/10.1071/PP9950875.
  • Hayat, Q., Hayat S, Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005.
  • Kalaycı, M. (2005). Using JUMP with Examples and Variance Analysis Models for Agricultural Research. Anatolian Agricultural Research Institute Directorate Publications.
  • Karaağaç, H. A., Aykanat, S., Gültekin, R., & Baran, M. F. (2014). Determination of energy use efficiency in the production of main product corn in Adana. Tekirdağ Faculty of Agriculture Journal, 11(3), 75-81.
  • Kaydan, D. (2006). Effects of different salicylic acid doses and treatments on wheat (Triticum aestivum L.) and lentil (Lens culinaris Medik.) yield and yield components. Journal of Agricultural Sciences, 12(3), 285-293. https://doi.org/10.1501/Tarimbil_0000000463
  • Khan, W., Balakrishnan, P., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485-492. https://doi.org/10.1078/0176-1617-00865
  • Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626–637. https://doi.org/10.1111/j.1469-8137.2010.03378.x
  • Mutlu, S., Atici, O., & Nalbantoglu, B. (2009). Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biologia Plantarum, 53, 334-338.
  • Nun, N. B., Plakhine, D., Joel, D. M. & Mayer, A. M. (2003). Changes in the activity of the alternative oxidase in Orobanche seeds during conditioning and their possible physiological function. Phytochemistry, 64(1), 235-241. https://doi.org/10.1016/S0031-9422(03)00165-1
  • Özkorkmaz, F., & Öner, F. (2022). Determination of the effect of salicylic acid applications on germination and seed characteristics of barley (Hordeum vulgare L.) varieties under salt stress. Ordu University Journal of Science and Technology, 12(2), 119-134. https://doi.org/10.54370/ordubtd.1143106
  • Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., & Job, D. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923. https://doi.org/10.1104/pp.106.082057
  • Ramanujam, M. P., Jaleel, V. A., & Kumaravelu, G. (1998). Effect of salicylic acid on nodulation, nitrogenous compounds and related enzymes of Vigna mungo. Biologia Plantarum, 41, 307-311
  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439-463.
  • Raskin, I., Skubatz, H., Tang, W., & Mense, B. J. D. (1990). Salicylic acid levels in thermogenic and nonthermogenic plants. Annual Botany, 66, 369-373. https://doi.org/10.1093/oxfordjournals.aob.a088037
  • Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317-322.
  • Singh, G., & Kaur, M. (1980). Effect of growth regulators on podding and yield of mung bean (Vigna radiata L. Wiiczek). Indian Journal of Plant Physiology, 23, 366-370.
  • Snyman, M., & Cronje´ M. J. (2008). Modulation of heat shock factors accompanied by salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany, 59(8), 2125-2132. https://doi.org/10.1093/jxb/ern075
  • Soliman, M. H., Al-Juhani, R. S., Hashash, M. A., & Al-Juhani, F. M. (2016). Effect of seed priming with salicylic acid on seed germination and seedling growth of broad bean (Vicia faba L). International Journal of Agricultural Technology, 12(6), 1125-1138.
  • Tammam, A. A. (2005). Response of Vicia faba plants to the interactive effect of sodium chloride salinity and salicylic acid treatment. Acta Agronomica Hungarica, 51(3), 239–248. https://doi.org/10.1556/AAgr.51.2003.3.1
  • Tohma, Ö. (2007). Effect of salicylic application on salt stress tolerance in strawberry [Master's Thesis-Atatürk University]
  • Tufail, A., Arfan, M., Gurmani, A. R., Khan, A., & Bano, A. (2013). Salicylic acid induced salinity tolerance in maize (Zea mays). Pakistan Journal of Botany, 45(S1), 75-82.
  • Türkyılmaz, B., Aktaş, L. Y., & Güven, A. (2005). Some salicylic acid-stimulated physiological and biochemical changes in Phaseolus vulgaris L. Fırat University Journal of Science and Engineering Sciences, 17, 319-326.
  • Wang, Y. R., Yu, L., Nan, Z. B., & Liu, Y. L. (2004). Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop Science, 44(2), 535-541. http://doi.org/10.2135/cropsci2004.0535
  • Xie, Z., Zhang, Z. L., Hanzlik, S., Cook, E., & Sjen, Q. J. (2007). Salicylic acid inhibits gibberellin-induced alphaamylase expression and seed germination via a pathway involving an abscisic-acidinducible WRKY gene. Plant Molecular Biology, 64, 293–303. http://doi.org/10.1007/s11103-007-9152-0
  • Uzunlu, M. (2006). Effects of aspirin on increasing the tolerance of melon seedlings to different abiotic stress conditions [Master's Thesis- Kahramanmaraş Sütçü İmam University].
  • Yağmur, M., & Kaydan, D. (2006). Different intercrop arrangements with lentil and barley under dryland condition. Pakistan Journal of Biological Sciences, 9(10), 1917-1922.
  • Yıldız, M., Terzi, H., & Akçalı, N. (2014). Salicylic acid and polyamines in plant salt stress tolerance. Afyon Kocatepe University Journal of Science and Engineering Sciences, 14(2014), 7-22.
  • Yılmaz, A., & Çiftçi, V. (2021). Pütresin’in tuz stresi altında yetişen yer fıstığı (Arachis hypogaea L.)’na etkisi. Avrupa Bilim ve Teknoloji Dergisi, (31), 562-567. https://doi.org/10.31590/ejosat.1013051
  • Yilmaz, A., Yildirim, E., Yilmaz, H., Soydemir, H. E., Güler, E., Ciftci, V., & Yaman, M. (2023). Use of arbuscular mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in sweet basil (Ocimum basilicum L.). Sustainability, 15(7), 5982. https://doi.org/10.3390/su15075982
  • Yilmaz, A. (2023). Vermicompost enhances saline tolerance in peanut (Arachis hypogaea L.). Black Sea Journal of Agriculture, 6(1), 1-7. https://doi.org/10.47115/bsagriculture.1181705

Düzeltme: Effects of Doses and Different Applications of Salicylic Acid on Salinity Stress and Plant Growth in Broad Beans (Vicia faba L.)

Yıl 2024, Cilt: 10 Sayı: 3, 479 - 479, 24.12.2024
Bu makalenin ilk hali 25 Ağustos 2024 tarihinde yayımlandı. https://dergipark.org.tr/tr/pub/ijaws/issue/86594/1436876

Düzeltme Notu

This correction was written because the "Project Number" in the Acknowledgement section of the article titled "Effects of Doses and Different Applications of Salicylic Acid on Salinity Stress and Plant Growth in Broad Beans (Vicia faba L.)" by Uçar, Ö., Soysal, S., Erman, M., Çığ, F., Önder S., published in the 10th volume, 2nd issue of the International Journal of Agricultural and Wildlife Sciences in 2024 with the DOI number 10.24180/ijaws.1436876, was inadvertently written incorrectly by the authors.

Öz

This study was carried out to determine the effects of different application methods and doses of salicylic acid on the first developmental stages of broad beans grown under salt stress. The experiment was carried out in the plant growth cabinet at Siirt University, Faculty of Agriculture, Department of Field Crops laboratory. During the investigation, the temperature of the working environment was kept at 25±3 °C. Plants were grown in 16 hours of light and 8 hours in the dark period. Three salt concentrations (0, 75 and 150 mM NaCl) and three salicylic acid (SA) concentrations (0, 0.5 and 1.0 mM SA) were applied to the plants through soil and leaves. As a pre-application, 0.5 mM SA and hydropriming were used. According to the results, germination percentage, germination index, mean germination time, stem height, root lenght, stem fresh weight, stem dry weight, root fresh weight, root dry weight and total chlorophyll content varied between 63.33-86.67%, 0.97-2.51, 3.60-6.28 day, 36.11-39.47 cm, 27.50-30.57 cm, 4.404-6.623 g, 0.473-0.555 g, 2.813-3.400 g, 2.813-3.400 g, 0.300-0.396 g and 41.0-50.6%, respectively. While salinity levels did not have a significant impact on germination characteristics, hydropriming application improved germination characteristics, but salicylic acid application had a negative effect. However, it has been observed that salicylic acid applications increase seedling development and dry matter accumulation and promote plant growth under salinity stress. As a result, it has been observed that the application of 0.5 mM salicylic acid is a useful application to improve salinity stress and promote plant growth in broad bean.

Destekleyen Kurum

Siirt University Scientific Research Projects Coordination Office

Proje Numarası

2021-SİÜZİR-047

Teşekkür

This study was supported by Siirt University as Scientific Research Project No. 2021-SİÜZİR-047. We would like to thank Siirt University Scientific Research Projects Coordination Office for their support.

Kaynakça

  • Açıkbaş, S., & Özyazıcı, M. A. (2022, December 29-30). Effect of salicylic acid seed pre-application process on germination and seedling development of vetch (Vicia ervilia L.) plant. [Paper presentation]. 11th International Conference on Applied Science, Diyarbakır, Türkiye.
  • Akıncı, S. & Çalışkan, Ü. (2010). The effect of lead on seed germination and tolerance levels in some summer vegetables. Ecology, 19(74), https://doi.org/164-172. 10.5053/ekoloji.2010.7420
  • Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. Journal of the Saudi Society of Agricultural Sciences, 17, 1-8. https://doi.org/10.1016/j.jssas.2015.10.002
  • Anonymous (2020). T.R. Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Aegean Agricultural Research Institute Directorate. https://arastirma.tarimorman.gov.tr/etae/Menu/68/Tescilli-Cesit-Katalogu-2018. [Access date: 21.09.2020]
  • Anonymous (2022). Turkish Statistical Institute (TURKSTAT). Broad bean production data. https://www.tuik.gov.tr. [Access date: 20.09.2022]
  • Azooz, M. M., Youssef, A. M., & Ahmad, P. (2011). Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International Journal of Plant Physiology and Biochemistry, 3(14), 253-264. https://doi.org/10.5897/IJPPB11.052
  • Baran, A., & Doğan, M. (2014). Physiological effect of salicylic acid in salt-stressed soybean (Glycine max L.). Süleyman Demirel University Institute of Science and Technology Journal, 18(1), 78-84.
  • Baran, M. F., Durgut, M. R., Kayhan, İ. E., Kurşun, İ., Aydın, B., & Bayhan, Y. (2014). II. Technical and economical determination of different tillage methods that can be applied in silage corn production (2nd Year). Tekirdağ Faculty of Agriculture Journal, 11(2), 11-20.
  • Ceritoğlu, M., & Erman, M. (2020). Mitigation of salinity stress on chickpea germination by salicylic acid priming. International Journal of Agricultural and Wildlife Sciences, 6(3), 582-591. https://doi.org/10.24180/ijaws.774969
  • Çoban, S. S. (2007). The effect of salicylic acid on drought-related physiological parameters and mineral nutrition in chickpea genotypes [Master's Thesis-Ankara University]
  • Eberhard, S., Doubrava, N., Marta, V., Mohnen, D., Southwick, A., Darviell, A., & Albersheim. P. (1989). Pectic cell wall fragments regulate tobacco thin-cell layer explant morphogenesis. Plant Cell, 1, 747-755. https://doi.org/10.1105/tpc.1.8.747.
  • Ekmekçi, E., Apan, M., & Kara, T. (2005). Effect of salinity on plant development. 19 Mayıs University Faculty of Agriculture Journal, 20(3), 118-125.
  • Ellis, R. H., & Roberts, E. H. (1980). Towards a Rational Basis for Seed Testing Seed Quality, in: Hebblethwaitei, P. (Ed), Seed Production, Butterworths.
  • Flowers, T. J., & Yeo, A. R. (1995). Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology, 22, 875-884. https://doi.org/10.1071/PP9950875.
  • Hayat, Q., Hayat S, Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005.
  • Kalaycı, M. (2005). Using JUMP with Examples and Variance Analysis Models for Agricultural Research. Anatolian Agricultural Research Institute Directorate Publications.
  • Karaağaç, H. A., Aykanat, S., Gültekin, R., & Baran, M. F. (2014). Determination of energy use efficiency in the production of main product corn in Adana. Tekirdağ Faculty of Agriculture Journal, 11(3), 75-81.
  • Kaydan, D. (2006). Effects of different salicylic acid doses and treatments on wheat (Triticum aestivum L.) and lentil (Lens culinaris Medik.) yield and yield components. Journal of Agricultural Sciences, 12(3), 285-293. https://doi.org/10.1501/Tarimbil_0000000463
  • Khan, W., Balakrishnan, P., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485-492. https://doi.org/10.1078/0176-1617-00865
  • Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626–637. https://doi.org/10.1111/j.1469-8137.2010.03378.x
  • Mutlu, S., Atici, O., & Nalbantoglu, B. (2009). Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biologia Plantarum, 53, 334-338.
  • Nun, N. B., Plakhine, D., Joel, D. M. & Mayer, A. M. (2003). Changes in the activity of the alternative oxidase in Orobanche seeds during conditioning and their possible physiological function. Phytochemistry, 64(1), 235-241. https://doi.org/10.1016/S0031-9422(03)00165-1
  • Özkorkmaz, F., & Öner, F. (2022). Determination of the effect of salicylic acid applications on germination and seed characteristics of barley (Hordeum vulgare L.) varieties under salt stress. Ordu University Journal of Science and Technology, 12(2), 119-134. https://doi.org/10.54370/ordubtd.1143106
  • Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., & Job, D. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923. https://doi.org/10.1104/pp.106.082057
  • Ramanujam, M. P., Jaleel, V. A., & Kumaravelu, G. (1998). Effect of salicylic acid on nodulation, nitrogenous compounds and related enzymes of Vigna mungo. Biologia Plantarum, 41, 307-311
  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439-463.
  • Raskin, I., Skubatz, H., Tang, W., & Mense, B. J. D. (1990). Salicylic acid levels in thermogenic and nonthermogenic plants. Annual Botany, 66, 369-373. https://doi.org/10.1093/oxfordjournals.aob.a088037
  • Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317-322.
  • Singh, G., & Kaur, M. (1980). Effect of growth regulators on podding and yield of mung bean (Vigna radiata L. Wiiczek). Indian Journal of Plant Physiology, 23, 366-370.
  • Snyman, M., & Cronje´ M. J. (2008). Modulation of heat shock factors accompanied by salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany, 59(8), 2125-2132. https://doi.org/10.1093/jxb/ern075
  • Soliman, M. H., Al-Juhani, R. S., Hashash, M. A., & Al-Juhani, F. M. (2016). Effect of seed priming with salicylic acid on seed germination and seedling growth of broad bean (Vicia faba L). International Journal of Agricultural Technology, 12(6), 1125-1138.
  • Tammam, A. A. (2005). Response of Vicia faba plants to the interactive effect of sodium chloride salinity and salicylic acid treatment. Acta Agronomica Hungarica, 51(3), 239–248. https://doi.org/10.1556/AAgr.51.2003.3.1
  • Tohma, Ö. (2007). Effect of salicylic application on salt stress tolerance in strawberry [Master's Thesis-Atatürk University]
  • Tufail, A., Arfan, M., Gurmani, A. R., Khan, A., & Bano, A. (2013). Salicylic acid induced salinity tolerance in maize (Zea mays). Pakistan Journal of Botany, 45(S1), 75-82.
  • Türkyılmaz, B., Aktaş, L. Y., & Güven, A. (2005). Some salicylic acid-stimulated physiological and biochemical changes in Phaseolus vulgaris L. Fırat University Journal of Science and Engineering Sciences, 17, 319-326.
  • Wang, Y. R., Yu, L., Nan, Z. B., & Liu, Y. L. (2004). Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop Science, 44(2), 535-541. http://doi.org/10.2135/cropsci2004.0535
  • Xie, Z., Zhang, Z. L., Hanzlik, S., Cook, E., & Sjen, Q. J. (2007). Salicylic acid inhibits gibberellin-induced alphaamylase expression and seed germination via a pathway involving an abscisic-acidinducible WRKY gene. Plant Molecular Biology, 64, 293–303. http://doi.org/10.1007/s11103-007-9152-0
  • Uzunlu, M. (2006). Effects of aspirin on increasing the tolerance of melon seedlings to different abiotic stress conditions [Master's Thesis- Kahramanmaraş Sütçü İmam University].
  • Yağmur, M., & Kaydan, D. (2006). Different intercrop arrangements with lentil and barley under dryland condition. Pakistan Journal of Biological Sciences, 9(10), 1917-1922.
  • Yıldız, M., Terzi, H., & Akçalı, N. (2014). Salicylic acid and polyamines in plant salt stress tolerance. Afyon Kocatepe University Journal of Science and Engineering Sciences, 14(2014), 7-22.
  • Yılmaz, A., & Çiftçi, V. (2021). Pütresin’in tuz stresi altında yetişen yer fıstığı (Arachis hypogaea L.)’na etkisi. Avrupa Bilim ve Teknoloji Dergisi, (31), 562-567. https://doi.org/10.31590/ejosat.1013051
  • Yilmaz, A., Yildirim, E., Yilmaz, H., Soydemir, H. E., Güler, E., Ciftci, V., & Yaman, M. (2023). Use of arbuscular mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in sweet basil (Ocimum basilicum L.). Sustainability, 15(7), 5982. https://doi.org/10.3390/su15075982
  • Yilmaz, A. (2023). Vermicompost enhances saline tolerance in peanut (Arachis hypogaea L.). Black Sea Journal of Agriculture, 6(1), 1-7. https://doi.org/10.47115/bsagriculture.1181705
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Agronomi, Organik Tarım , Tahıllar ve Yemeklik Tane Baklagiller
Bölüm Düzeltme
Yazarlar

Özge Uçar 0000-0002-4650-4998

Sipan Soysal 0000-0002-0840-6609

Murat Erman 0000-0002-1435-1982

Fatih Çığ 0000-0002-4042-0566

Soner Önder 0000-0002-3798-8660

Proje Numarası 2021-SİÜZİR-047
Erken Görünüm Tarihi 21 Aralık 2024
Yayımlanma Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 3

Kaynak Göster

APA Uçar, Ö., Soysal, S., Erman, M., Çığ, F., vd. (2024). Effects of Doses and Different Applications of Salicylic Acid on Salinity Stress and Plant Growth in Broad Beans (Vicia faba L.). Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 10(3), 479-479.

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a