Research Article
BibTex RIS Cite

Flow analyses of highly concentrated xhantan gum fluid

Year 2018, Volume: 2 Issue: 2, 135 - 140, 28.12.2018
https://doi.org/10.32571/ijct.468529

Abstract

The concentration effect
of Xanthan gum (XG) solutions (1.0, 1.5, 2.0, 2.5% w/v) on the rheological flow
parameters are examined using stress controlled rheometer and gravity driven
flow set-up measurement at
25°C. Concentrated XG solutions has yielding behavior
obtained by fitting results through Herschel-Bulkley (HB) model with highest
regression coefficient R2 = 0.995 and R2 = 0.993
respectively by rheometer and set-up measurement. The results agreed well each
other from these measurements. Increasing the concentration of XG solutions
promote dynamic and static yield stresses due to increase of entanglement
structure density of XG solutions. Also, the magnitudes of c
onsistency index, K, have
increasing trend with XG concentration as a result of increasing entanglement
density of XG structure. Static yield stress values are much closely dynamic
stress values getting from under gravity dynamic flow indicating that supplies
undisturbed moleculer structure of XG due to nature of creeping flow.

References

  • 1. Barnes, H. A. J. Non-Newton Fluid 1997, 70, 1-33.
  • 2. Barnes, H. A.; Hutton J. F.; Walters, K. An introduction to rheology, Elsevier, Amsterdam, 1989.
  • 3. Bird R.B.; Dai G.C.; Yarusso, B. J. Rev. Chem. Eng.1983, 1, 1-83.
  • 4. Tanner, R.I. Engineering rheology, 2nd edn. Oxford university press, London, 2000.
  • 5. Barnes, H.A.; Walters, K. Rheol. Acta 1985, .24, 323-326,
  • 6. Chhabra, R.P.; Richardson, J.F. Non-Newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, Oxford, 2008.
  • 7. Dullaert, K.; Mewis, J. J. Rheol. 2005, 49, 1213-1230.
  • 8. Alquraishi, A.A.; Alsewailem, F.D. Carbohyd. Polym. 2012, 88, 859-863.
  • 9. Anna, S. L.; McKinley, G.H. J. Rheol. 2001, 45 (1), 115-138.
  • 10. Cuvelier, G.; Launay, B. Carbohyd. Polym. 1986, 6, 321-333.
  • 11.Lim, T.; Uhl, J. T; Prudhomme, R.K. J. Rheol. 1984, 28, 367-379.
  • 12. Nguyen, Q.D.; Boger, D.V. Annu. Rev. Fluid 1992, 24, 47-88.
  • 13.Yapici, K.; Cakmak, K. N.; Ilhan, N.; Uludag, Y. Korea-Aust. Rheol. J. 2014, 26, 1-9
  • 14. Tozzi, E.J.; Bacca, L.A.; Hartt, W.H.; McCarthy, K.L; McCarthy M. J. J. Rheol. 2012, 56, 1464-1499.
  • 15. Callaghan, P.T. Rep. Prog. Phys. 1999, 62, 599-670.
  • 16. Bird, R.B.; Stewart, W. E.; Lightfoot, E. N. Transport phenonema, 1st ed., John Wiley and Sons Inc., New York, USA, 1960.
  • 17. Bobade, V.; Cheetham, M.; Hashim, J.; Eshtiaghi, N. Water Res. 2018, 134, 86-91.
Year 2018, Volume: 2 Issue: 2, 135 - 140, 28.12.2018
https://doi.org/10.32571/ijct.468529

Abstract

References

  • 1. Barnes, H. A. J. Non-Newton Fluid 1997, 70, 1-33.
  • 2. Barnes, H. A.; Hutton J. F.; Walters, K. An introduction to rheology, Elsevier, Amsterdam, 1989.
  • 3. Bird R.B.; Dai G.C.; Yarusso, B. J. Rev. Chem. Eng.1983, 1, 1-83.
  • 4. Tanner, R.I. Engineering rheology, 2nd edn. Oxford university press, London, 2000.
  • 5. Barnes, H.A.; Walters, K. Rheol. Acta 1985, .24, 323-326,
  • 6. Chhabra, R.P.; Richardson, J.F. Non-Newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, Oxford, 2008.
  • 7. Dullaert, K.; Mewis, J. J. Rheol. 2005, 49, 1213-1230.
  • 8. Alquraishi, A.A.; Alsewailem, F.D. Carbohyd. Polym. 2012, 88, 859-863.
  • 9. Anna, S. L.; McKinley, G.H. J. Rheol. 2001, 45 (1), 115-138.
  • 10. Cuvelier, G.; Launay, B. Carbohyd. Polym. 1986, 6, 321-333.
  • 11.Lim, T.; Uhl, J. T; Prudhomme, R.K. J. Rheol. 1984, 28, 367-379.
  • 12. Nguyen, Q.D.; Boger, D.V. Annu. Rev. Fluid 1992, 24, 47-88.
  • 13.Yapici, K.; Cakmak, K. N.; Ilhan, N.; Uludag, Y. Korea-Aust. Rheol. J. 2014, 26, 1-9
  • 14. Tozzi, E.J.; Bacca, L.A.; Hartt, W.H.; McCarthy, K.L; McCarthy M. J. J. Rheol. 2012, 56, 1464-1499.
  • 15. Callaghan, P.T. Rep. Prog. Phys. 1999, 62, 599-670.
  • 16. Bird, R.B.; Stewart, W. E.; Lightfoot, E. N. Transport phenonema, 1st ed., John Wiley and Sons Inc., New York, USA, 1960.
  • 17. Bobade, V.; Cheetham, M.; Hashim, J.; Eshtiaghi, N. Water Res. 2018, 134, 86-91.
There are 17 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Guler Bengusu Tezel 0000-0002-0671-208X

Publication Date December 28, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Tezel, G. B. (2018). Flow analyses of highly concentrated xhantan gum fluid. International Journal of Chemistry and Technology, 2(2), 135-140. https://doi.org/10.32571/ijct.468529
AMA Tezel GB. Flow analyses of highly concentrated xhantan gum fluid. Int. J. Chem. Technol. December 2018;2(2):135-140. doi:10.32571/ijct.468529
Chicago Tezel, Guler Bengusu. “Flow Analyses of Highly Concentrated Xhantan Gum Fluid”. International Journal of Chemistry and Technology 2, no. 2 (December 2018): 135-40. https://doi.org/10.32571/ijct.468529.
EndNote Tezel GB (December 1, 2018) Flow analyses of highly concentrated xhantan gum fluid. International Journal of Chemistry and Technology 2 2 135–140.
IEEE G. B. Tezel, “Flow analyses of highly concentrated xhantan gum fluid”, Int. J. Chem. Technol., vol. 2, no. 2, pp. 135–140, 2018, doi: 10.32571/ijct.468529.
ISNAD Tezel, Guler Bengusu. “Flow Analyses of Highly Concentrated Xhantan Gum Fluid”. International Journal of Chemistry and Technology 2/2 (December 2018), 135-140. https://doi.org/10.32571/ijct.468529.
JAMA Tezel GB. Flow analyses of highly concentrated xhantan gum fluid. Int. J. Chem. Technol. 2018;2:135–140.
MLA Tezel, Guler Bengusu. “Flow Analyses of Highly Concentrated Xhantan Gum Fluid”. International Journal of Chemistry and Technology, vol. 2, no. 2, 2018, pp. 135-40, doi:10.32571/ijct.468529.
Vancouver Tezel GB. Flow analyses of highly concentrated xhantan gum fluid. Int. J. Chem. Technol. 2018;2(2):135-40.