Araştırma Makalesi
BibTex RIS Kaynak Göster

Uçucu Küllü Alçı Sıvaların Isıl Özellikleri

Yıl 2020, Cilt: 2 Sayı: 1, 120 - 133, 15.07.2020

Öz

Bu çalışmada, uçucu küllü alçı sıvada, uçucu kül tane çapının, kompozit malzemenin termal performansına etkisi araştırılmıştır. Testlerde kullanılan uçucu kül, Afsın-Elbistan ve Soma Termik Santrallerinden temin edilmiş ve tane çaplarına göre elenmemiş, >75.10-6 m, (45-75).10-6 m ve <45.10-6 m gruplandırılmıştır. Tüm uçucu kül ve alçı karışımında uçucu külün ağırlık yüzdeleri 10, 30, 50, 70 ve %90 olarak alınmıştır. Bağlayıcı olarak saten alçı kullanılmış olup, tane çapı ve uçucu kül miktarına bağlı olarak 20 örnek hazırlanmıştır. Hazırlanan numuneler, yoğunluk, termal iletkenlik ve porozite gibi testlere tabi tutulmuştur. Yapılan testlere göre tane çapı azaldıkça, külün yoğunluğunun %16.12 arttığı ve gözenekli külün yerini dolu taneciklere bıraktığı ve kül renginin açık kahverengiye dönüştüğü gözlenmiştir, Buna ek olarak uçucu kül-alçı karışımında ilave edilen kül oranı %10 dan %90 oranına arttıkça, ısıl iletkenlik değerleri sırasıyla %14.47-24.52 ve %1.25-9.4 küçüldüğü belirlenmiş ve uçucu kül ilavesinin alçı sıvaya yalıtım özelliği kazandırdığı sonucuna varılmıştır.

Kaynakça

  • Arif, M.A., (2016). Recycling of fly ash as an energy efficient building material: A sustainable approach, Engineering Materials, 692, 54-65.
  • Babu, D.S., Babu, K.G., Wee, T.H., (2005). Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cement and Concrete Research, 35, 1218-1223.
  • Benazzouk A., Douzane O, Mezreb K., Laidoudi B., Queneudec M., (2008), Thermal conductivity of cement composites containing rubber waste particles, experimental study and modelling, Construction and Building Materials. 22, 573-579.
  • Bicer, A., Celik, N., Bicer, Y., (2010). Mechanical and thermal properties concretes with rice husk and its ash, 10th International Conference on Clean Energy, (ICCE-2010), 15-17 September, Famagusta, N. Cyprus.
  • Bicer, A., (2018). Effect of fly ash particle size on thermal and mechanical properties of fly ash-cement composites, Thermal Science and Engineering Progress, 8, 78-82
  • Bicer, A., (2019). Influence of tragacanth resin on the thermal and mechanical properties of fly ash-cement composites, Journal of Adhesion Science and technology, 33(10), 1019-1032.
  • Bicer, A., (2020). Effect of production temperature on thermal & mechanical properties of polystyrene - fly ash composites, Advanced Composites Letters, 29, 1-8, 2020
  • Dan, R., (2004). Properties of fresh concrete incorporating a high volume of fly ash as partial fine sand replacement, Materials and Structures, 30, 473-479.
  • Denko, S., (1990). Shotherm Operation Manual No 125-2. K.K. Instrument Products Department, 13-9, Shiba Daimon, Tokyo, 105, Japan
  • Duran, A.C., (2004). Carbonation-porosity-strength model for fly ash concrete, Journal of Materials in Civil Engineering, 16, 91-94.
  • Karaşin, A., Doğruyol, M., (2014). An experimental study on strength and durability for utilization of fly ash in concrete mix, Advances in Materials Science & Engineering, 25, 1–6.
  • Kaya, A., Kar, F., (2015). An insulation plaster with waste expanded polystyrene, 19th International Conference on Thermal Engineering and Thermogrammemetry (THERMO), 7-10 July, Budapest, Hungary.
  • Kaya, A., Kar, F., (2016). Properties of concrete containing waste expanded polystyrene and natural resin. Construction and Building Materials, 105, 572-578
  • Khedari, J., Suttisonk, B., Pratinthong, N., Hirunlabh, J., (2001). New lightweight composite construction materials with low thermal conductivity. Cement and Concrete Composites, 23, 65-70
  • Nordin, N., Abdullah, M.F., Tahir, M.F., Sandu, A.V., Hussin, K., (2016). Utilization of fly ash waste as construction material, International Journal of Conservation Science, 7(1), 161-166.
  • Rafieizonooz, M., Mirza, J., Salim, M.R., Hussin, M., (2016), Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement, Construction and Building Materials, 116, 15–24.
  • Rim, K.A., Ledhem, A., Douzane, O., Dheilly, R.M., Queneudec, M., (1999). Influence of the proportion of wood on the thermal and mechanical performances of clay cement-wood composites, Cement and Concrete Composites, 21, 269–276.
  • Rivera, F., Martínez, P., Castro, J., López, M., (2015). Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates, Cement and Concrete Composites, 63, 104–112.
  • Saiisik, A., Sariisik, G., (2002). New production process for insulation blocks composed of EPS and lightweight concrete containing pumice aggregate. Materials and Structures. 45(9), 1345-1357.
  • Siddique, R., (2003). Effect of fine aggregate replacement with class F fly ash on the mechanical properties of concrete, Cement and Concrete Research, 33, 539–547.

Thermal Properties of Gypsum Plaster with Fly Ash

Yıl 2020, Cilt: 2 Sayı: 1, 120 - 133, 15.07.2020

Öz

In this study, grain size of fly ash’s, which is used in gypsum plaster, impact on thermal performance of composite material has been investigated. Used in the testing processes, the fly ash is obtained from the Afsın-Elbistan and Soma Thermal Power Plants and divided into the different grain size classes as unsieved, >75.10-6 m, (45-75).10-6 m and <45.10-6 m. For every fly ash and gypsum mixture. The mixing ratio of the fly ash is taken as 10, 30, 50, 70 and 90% in the mixture. Gypsum is used as a binder agent and there are 20 sample available, which are prepared based on the grain diameter and the amount of fly ash. New products have undergone severalto determine their properties, such as density, thermal conductivity and porosity. It was observed from the tests that, as the diameter of the grain reduced, the density of the ash increased by 16.12 per cent, and the porous layer left its place to full-grain ash and became light brown. While the added ash ratio increased by 10-90% in ash mixtures of gypsum, thermal conductivity values were detected to decrease by (14.47-24.52) % and (1.25-9.4) % respectively. In addition, the fly ash has given the plaster an insulation property.

Kaynakça

  • Arif, M.A., (2016). Recycling of fly ash as an energy efficient building material: A sustainable approach, Engineering Materials, 692, 54-65.
  • Babu, D.S., Babu, K.G., Wee, T.H., (2005). Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cement and Concrete Research, 35, 1218-1223.
  • Benazzouk A., Douzane O, Mezreb K., Laidoudi B., Queneudec M., (2008), Thermal conductivity of cement composites containing rubber waste particles, experimental study and modelling, Construction and Building Materials. 22, 573-579.
  • Bicer, A., Celik, N., Bicer, Y., (2010). Mechanical and thermal properties concretes with rice husk and its ash, 10th International Conference on Clean Energy, (ICCE-2010), 15-17 September, Famagusta, N. Cyprus.
  • Bicer, A., (2018). Effect of fly ash particle size on thermal and mechanical properties of fly ash-cement composites, Thermal Science and Engineering Progress, 8, 78-82
  • Bicer, A., (2019). Influence of tragacanth resin on the thermal and mechanical properties of fly ash-cement composites, Journal of Adhesion Science and technology, 33(10), 1019-1032.
  • Bicer, A., (2020). Effect of production temperature on thermal & mechanical properties of polystyrene - fly ash composites, Advanced Composites Letters, 29, 1-8, 2020
  • Dan, R., (2004). Properties of fresh concrete incorporating a high volume of fly ash as partial fine sand replacement, Materials and Structures, 30, 473-479.
  • Denko, S., (1990). Shotherm Operation Manual No 125-2. K.K. Instrument Products Department, 13-9, Shiba Daimon, Tokyo, 105, Japan
  • Duran, A.C., (2004). Carbonation-porosity-strength model for fly ash concrete, Journal of Materials in Civil Engineering, 16, 91-94.
  • Karaşin, A., Doğruyol, M., (2014). An experimental study on strength and durability for utilization of fly ash in concrete mix, Advances in Materials Science & Engineering, 25, 1–6.
  • Kaya, A., Kar, F., (2015). An insulation plaster with waste expanded polystyrene, 19th International Conference on Thermal Engineering and Thermogrammemetry (THERMO), 7-10 July, Budapest, Hungary.
  • Kaya, A., Kar, F., (2016). Properties of concrete containing waste expanded polystyrene and natural resin. Construction and Building Materials, 105, 572-578
  • Khedari, J., Suttisonk, B., Pratinthong, N., Hirunlabh, J., (2001). New lightweight composite construction materials with low thermal conductivity. Cement and Concrete Composites, 23, 65-70
  • Nordin, N., Abdullah, M.F., Tahir, M.F., Sandu, A.V., Hussin, K., (2016). Utilization of fly ash waste as construction material, International Journal of Conservation Science, 7(1), 161-166.
  • Rafieizonooz, M., Mirza, J., Salim, M.R., Hussin, M., (2016), Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement, Construction and Building Materials, 116, 15–24.
  • Rim, K.A., Ledhem, A., Douzane, O., Dheilly, R.M., Queneudec, M., (1999). Influence of the proportion of wood on the thermal and mechanical performances of clay cement-wood composites, Cement and Concrete Composites, 21, 269–276.
  • Rivera, F., Martínez, P., Castro, J., López, M., (2015). Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates, Cement and Concrete Composites, 63, 104–112.
  • Saiisik, A., Sariisik, G., (2002). New production process for insulation blocks composed of EPS and lightweight concrete containing pumice aggregate. Materials and Structures. 45(9), 1345-1357.
  • Siddique, R., (2003). Effect of fine aggregate replacement with class F fly ash on the mechanical properties of concrete, Cement and Concrete Research, 33, 539–547.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler / Articles
Yazarlar

Ayşe Biçer 0000-0003-4514-5644

Yayımlanma Tarihi 15 Temmuz 2020
Gönderilme Tarihi 29 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 2 Sayı: 1

Kaynak Göster

APA Biçer, A. (2020). Thermal Properties of Gypsum Plaster with Fly Ash. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 2(1), 120-133.