Araştırma Makalesi
BibTex RIS Kaynak Göster

ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING

Yıl 2017, Cilt: 4 Sayı: 3, 137 - 146, 25.10.2017

Öz

In this study, a Nonlinear AutoRegressive
eXogenous (NARX) neural network is used to estimate the wind speed on three
monthly data sets taken from the wind central in Zonguldak province in Turkey.
In the estimation study, the first and second order curve fitting coefficients
of the measured temperature, pressure, humidity and solar radiation parameters
together with the wind speed are used. In the estimation process, before these
coefficients are applied directly to the NARX network structure, the most
suitable features are selected with ReliefF method to minimize the MSE value.
The number of delay steps in the NARX network structure is varied from 3 to 15
and the number of hidden neurons is varied from 3 to 15 to obtain model
parameters that give the least estimation error. In order to determine the
performance of the obtained model, the model is evaluated in terms of
statistical error criteria such as MAE, MSE and RMSE. The model parameters and
features matrix giving the least estimation error for the wind speed estimation
of the NARX network structure are determined. It has been observed that this
approach provides a high performance for estimating the wind speed with related
to other measured parameters.

Kaynakça

  • [1] Koc, E., Senel, M.C., 2013, “Dünyada ve Türkiye’de enerji durumu-genel değerlendirme”, Mühendis ve Makina, 54(639), 32-44.
  • [2] Ozgener, O., 2002, “Türkiye’de ve Dünya’da rüzgar enerjisi kullanımı”, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 4(3), 159-173.
  • [3] Tascikaraoglu, A., Uzunoglu, M., 2011, “Dalgacık dönüşümü ve yapay sinir ağları ile rüzgar hızı tahmini”, Elektrik-Elektronik ve Bilgisayar Sempozyumu, 106-111, Elazığ, Turkey.
  • [4] Senel, M.C., Koc, E., 2015, “Dünyada ve Türkiye’de rüzgâr enerjisi durumu-genel değerlendirme”, Mühendis ve Makina, 56(663), 46-56.
  • [5] Kose, B., Recebli, Z., Ozkaymak, M., 2014, “Stokastik modellerle rüzgâr hızı tahmini; Karabük örneği”, International Symposium on Innovative Technologies in Engineering and Science (ISITES), 18-20 June, 806-815, Karabuk, Turkey.
  • [6] Cakır, M.T., 2010, “Türkiye’nin rüzgâr enerji potansiyeli ve AB ülkeleri içindeki yeri”, Politeknik Dergisi, 13(4), 287-293.
  • [7] Ramasamy, P., Chandel, S.S., Yadav, A.K., 2015, “Wind speed prediction in the mountainous region of India using an artificial neural network model”, Renewable Energy, 80, 338-347.
  • [8] Chen, K., Yu, J., 2014, “Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach”, Applied Energy, 113, 690-705.
  • [9] Salcedo-Sanz, S., Pastor-Sanchez, A., Prieto, L., Blanco-Aguilera, A., Garcia-Herrera, R., 2014, “Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach”, Energy Conversion and Management, 87, 10-18.
  • [10] Mori, H., Umezawa, Y., 2009, “Application of NBTree to selection of meteorological variables in wind speed prediction”, IEEE Transmission & Distribution Conference & Exposition: Asia and Pacific, 26-30 October, 1-4, Seoul, South Korea.
  • [11] Cadenas, E., Rivera, W., Campos-Amezcua, R., Heard, C., 2016, “Wind speed prediction using a univariate ARIMA model and a multivariate NARX model”, Energies, 9(2), 109-123.
  • [12] Mohandes, M.A., Halawani, T.O., Rehman, S., Hussain, A.A., 2004, “Support vector machines for wind speed prediction”, Renewable Energy, 29(6), 939-947.
  • [13] Robnik-Sikonja, M., Kononenko, I., 1997, “An adaptation of Relief for attribute estimation in regression”, Machine Learning: Proceedings of the Fourteenth International Conference (ICML’ 97), 296-304.
  • [14] Mporas, I., Ganchev, T., 2009, “Estimation of unknown speaker’s height from speech”, International Journal of Speech Technoogy, 12(4), 149-160.
  • [15] Kotsiantis, S., Koumanakos, E., Tzelepis, D., Tampakas,V., 2006, “Forecasting fraudulent financial statements using data mining”, International Journal Computational Intelligence, 3(2), 104-110.
  • [16] Amjady, N., Daraeepour, A., Keynia, F., 2010, “Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network”, IET Generation, Transmission & Distribution, 4(3), 432-444.
  • [17] Hyndman R.J., Koehler, A.B., 2006, “Another look at measures of forecast accuracy”, International Journal of Forecasting, 22(4), 679-688.
Yıl 2017, Cilt: 4 Sayı: 3, 137 - 146, 25.10.2017

Öz

Kaynakça

  • [1] Koc, E., Senel, M.C., 2013, “Dünyada ve Türkiye’de enerji durumu-genel değerlendirme”, Mühendis ve Makina, 54(639), 32-44.
  • [2] Ozgener, O., 2002, “Türkiye’de ve Dünya’da rüzgar enerjisi kullanımı”, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 4(3), 159-173.
  • [3] Tascikaraoglu, A., Uzunoglu, M., 2011, “Dalgacık dönüşümü ve yapay sinir ağları ile rüzgar hızı tahmini”, Elektrik-Elektronik ve Bilgisayar Sempozyumu, 106-111, Elazığ, Turkey.
  • [4] Senel, M.C., Koc, E., 2015, “Dünyada ve Türkiye’de rüzgâr enerjisi durumu-genel değerlendirme”, Mühendis ve Makina, 56(663), 46-56.
  • [5] Kose, B., Recebli, Z., Ozkaymak, M., 2014, “Stokastik modellerle rüzgâr hızı tahmini; Karabük örneği”, International Symposium on Innovative Technologies in Engineering and Science (ISITES), 18-20 June, 806-815, Karabuk, Turkey.
  • [6] Cakır, M.T., 2010, “Türkiye’nin rüzgâr enerji potansiyeli ve AB ülkeleri içindeki yeri”, Politeknik Dergisi, 13(4), 287-293.
  • [7] Ramasamy, P., Chandel, S.S., Yadav, A.K., 2015, “Wind speed prediction in the mountainous region of India using an artificial neural network model”, Renewable Energy, 80, 338-347.
  • [8] Chen, K., Yu, J., 2014, “Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach”, Applied Energy, 113, 690-705.
  • [9] Salcedo-Sanz, S., Pastor-Sanchez, A., Prieto, L., Blanco-Aguilera, A., Garcia-Herrera, R., 2014, “Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach”, Energy Conversion and Management, 87, 10-18.
  • [10] Mori, H., Umezawa, Y., 2009, “Application of NBTree to selection of meteorological variables in wind speed prediction”, IEEE Transmission & Distribution Conference & Exposition: Asia and Pacific, 26-30 October, 1-4, Seoul, South Korea.
  • [11] Cadenas, E., Rivera, W., Campos-Amezcua, R., Heard, C., 2016, “Wind speed prediction using a univariate ARIMA model and a multivariate NARX model”, Energies, 9(2), 109-123.
  • [12] Mohandes, M.A., Halawani, T.O., Rehman, S., Hussain, A.A., 2004, “Support vector machines for wind speed prediction”, Renewable Energy, 29(6), 939-947.
  • [13] Robnik-Sikonja, M., Kononenko, I., 1997, “An adaptation of Relief for attribute estimation in regression”, Machine Learning: Proceedings of the Fourteenth International Conference (ICML’ 97), 296-304.
  • [14] Mporas, I., Ganchev, T., 2009, “Estimation of unknown speaker’s height from speech”, International Journal of Speech Technoogy, 12(4), 149-160.
  • [15] Kotsiantis, S., Koumanakos, E., Tzelepis, D., Tampakas,V., 2006, “Forecasting fraudulent financial statements using data mining”, International Journal Computational Intelligence, 3(2), 104-110.
  • [16] Amjady, N., Daraeepour, A., Keynia, F., 2010, “Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network”, IET Generation, Transmission & Distribution, 4(3), 432-444.
  • [17] Hyndman R.J., Koehler, A.B., 2006, “Another look at measures of forecast accuracy”, International Journal of Forecasting, 22(4), 679-688.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Konular Elektrik Mühendisliği
Bölüm Research Article
Yazarlar

Seçkin Karasu

Aytaç Altan

Zehra Saraç Bu kişi benim

Rıfat Hacıoğlu

Yayımlanma Tarihi 25 Ekim 2017
Gönderilme Tarihi 6 Temmuz 2017
Kabul Tarihi 17 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 4 Sayı: 3

Kaynak Göster

APA Karasu, S., Altan, A., Saraç, Z., Hacıoğlu, R. (2017). ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING. International Journal of Energy Applications and Technologies, 4(3), 137-146.
AMA Karasu S, Altan A, Saraç Z, Hacıoğlu R. ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING. IJEAT. Ekim 2017;4(3):137-146.
Chicago Karasu, Seçkin, Aytaç Altan, Zehra Saraç, ve Rıfat Hacıoğlu. “ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING”. International Journal of Energy Applications and Technologies 4, sy. 3 (Ekim 2017): 137-46.
EndNote Karasu S, Altan A, Saraç Z, Hacıoğlu R (01 Ekim 2017) ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING. International Journal of Energy Applications and Technologies 4 3 137–146.
IEEE S. Karasu, A. Altan, Z. Saraç, ve R. Hacıoğlu, “ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING”, IJEAT, c. 4, sy. 3, ss. 137–146, 2017.
ISNAD Karasu, Seçkin vd. “ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING”. International Journal of Energy Applications and Technologies 4/3 (Ekim 2017), 137-146.
JAMA Karasu S, Altan A, Saraç Z, Hacıoğlu R. ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING. IJEAT. 2017;4:137–146.
MLA Karasu, Seçkin vd. “ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING”. International Journal of Energy Applications and Technologies, c. 4, sy. 3, 2017, ss. 137-46.
Vancouver Karasu S, Altan A, Saraç Z, Hacıoğlu R. ESTIMATION OF FAST VARIED WIND SPEED BASED ON NARX NEURAL NETWORK BY USING CURVE FITTING. IJEAT. 2017;4(3):137-46.