Araştırma Makalesi
BibTex RIS Kaynak Göster

Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001

Yıl 2020, Cilt: 7 Sayı: 3, 61 - 68, 05.10.2020
https://doi.org/10.31593/ijeat.738318

Öz

The objective of this work was to reveal optimum culture composition for hydrogen and 5-aminolevulinic acid productions by Rhodobacter sphaeroides O.U.001 regarding substrate concentration and supplementations of elements and vitamins. Acetate was chosen as carbon source and five distinct concentrations (20, 25, 30, 35 and 40 mM) were tested in two experimental setups. While, elements (FeSO4, 2 g L-1 and Na2MoO4.2H2O, 0.2 g L-1) and vitamins (Biotin, 0.015 g L-1, Niacin, 0.5 g L-1 and Thiamine, 0.5 g L-1) were added into the media in the first setup, they were omitted in the latter for comparison. As a result, the highest hydrogen production (0.33 L H2 L-1 culture) was attained in the presence of supplements using 20 mM acetate. Similarly, the maximum amount of 5-ALA generation (16.54 mM) was achieved in 20 mM acetate containing medium under the same conditions. On the other hand, the greatest bacterial growth (OD660: 4.412, 2.162 g cdw L-1) was achieved in the absence of supplements using 40 mM acetate. To conclude, while element and vitamin supplementations promoted hydrogen and 5-ALA productions, absence of these had a positive effect on cell biomass. Specifically, the medium containing 20 mM acetate together with elements and vitamins could be suggested as the optimum growth culture for the highest hydrogen and 5-ALA productions.

Destekleyen Kurum

Selçuk Üniversitesi

Proje Numarası

BAP-11401112

Teşekkür

This study was supported by Selçuk University with the project number BAP-11401112.

Kaynakça

  • Kars, G. and Alparslan, Ü. 2013. Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. International Journal of Hydrogen Energy, 38, 14488-14494.
  • Kars, G. and Ceylan, A. 2013. Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. International Journal of Hydrogen Energy, 38, 5573-5579.
  • Al-Mohammedawi, H.H., Znad, H. and Eroğlu, E. 2019. Improvement of photofermentative biohydrogen production using pre-treated brewery wastewater with banana peels waste. International Journal of Hydrogen Energy, 44(5), 2560-2568.
  • Ghimire, A., Valentino, S., Frunzo, L., Pirozzi, F., Lens, P.N.L. and Esposito, G. 2016. Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Bioresource Technology, 217, 157-164.
  • Kwon, S.Y., Jiang, S.N., Zheng, J.H., Choy, H.E. and Min, J.J. 2014. Rhodobacter sphaeroides, A novel tumor-targeting bacteria that emits natural near-infrared fluorescence. Microbiology and Immunology, 58, 172-179.
  • Choudhary, M., Zanhua, X., Fu, Y.X. and Kaplan, S. 2007. Genome analyses of three strains of Rhodobacter sphaeroides: evidence of rapid evolution of chromosome II. Journal of Bacteriology, 189(5), 1914-1921.
  • Jaschke, P.R., Saer, R.G., Noll, S. and Beatty, J.T. 2011. Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods in Enzymology, 497, 519-538.
  • Liang, J. and Burris, H.R. 1988. Hydrogen burst associated with nitrogenase-catalyzed reactions. Proceedings of the National Academy of Sciences, 85, 9446-9450.
  • Ahmed, P.M., Fernández, P.M., de Figueroa, L.I.C. and Pajot, H.F. 2019. Exploitation alternatives of olive mill wastewater: production of value-added compounds useful for industry and agriculture. Biofuel Research Journal, 22, 980-994.
  • Gabrielyan, L., Hakobyan, L. and Trchounian, A. 2016. Comparative effects of Ni(II) and Cu(II) ions and their combinations on redox potential and hydrogen photoproduction by Rhodobacter sphaeroides. Journal of Photochemistry & Photobiology, B: Biology, 164, 271-275.
  • Li, X., Shi, H., Wang, Y., Zhang, S., Chu, J., Zhang, M., Huang, M. and Zhuang, Y. 2011. Effects of vitamins (nicotinic acid, vitamin B1 and biotin) on phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5. International Journal of Hydrogen Energy, 36, 9620-9625.
  • Hakobyan, L., Gabrielyan, L. and Trchounian, A. 2019. Biohydrogen by Rhodobacter sphaeroides during photo-fermentation: Mixed vs. sole carbon sources enhance bacterial growth and H2 production. International Journal of Hydrogen Energy, 44, 674-679.
  • Kim, M.S., Kim, D.H., Cha, J. and Lee, J.K. 2012. Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresource Technology, 116, 179-183.
  • Kars, G., Gündüz, U., Rakhely, G., Yücel, M., Eroğlu, İ. and Kovacs, L.K. 2008. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. International Journal of Hydrogen Energy, 33(12), 3056-3060.
  • Özgür, E., Mars, A.E., Peksel, B., Louwerse, A., Yücel, M., Gündüz, U., Claassen, M.A.P. and Eroğlu, İ., 2010. Biohydrogen production from beet molasses by sequential dark and photofermentation. International Journal of Hydrogen Energy, 35, 511-517.
  • Pascualone, M.J., Costa, M.B.G. and Dalmasso, P.R. 2019. Fermentative biohydrogen production from a novel combination of vermicompost as inoculum and mild heat-pretreated fruit and vegetable waste. Biofuel Research Journal, 23, 1046-1053.
  • Sasaki, K., Watanabe, M., Tanaka, T. and Tanaka, T. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58, 23-29.
  • Biebl, H. and Pfennig, N. Isolation of member of the family Rhodosprillaceae, in: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A. and Schlegel, H.G., The prokaryotes, Springer, New York, 1981, 267-273.
  • Sasaki, K., Tanaka, T., Nishizawa, Y. and Hayashi, M. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Applied Microbiology and Biotechnology, 32, 727-731.
  • Choi, C., Hong, B.S., Sung, H.C., Lee, H.S. and Kim, J.H. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnology Letters, 21, 551-554.
  • Waligorska, M., Seifert, K., Szymanska, K. and Łaniecki, M., 2006. Optimization of activation conditions of Rhodobacter sphaeroides in hydrogen generation process. Journal of Applied Microbiology, 101, 775-784.
  • Mauzerall, D. and Granick, S. 1956. The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. Journal of Biological Chemistry, 219, 435-446.
  • Demiriz, B.O., Kars, G., Yücel, M., Eroğlu, İ. and Gündüz, U. 2019. Hydrogen and poly-β-hydroxybutyric acid production at various acetate concentrations using Rhodobacter capsulatus DSM 1710. International Journal of Hydrogen Energy, 44(32), 17269-17277.
  • Laurinavichene, T. and Tsygankov, A. 2018. Inoculum density and buffer capacity are crucial for H2 photoproduction from acetate by purple bacteria. International Journal of Hydrogen Energy, 43(41), 18873-18882.
  • Kars, G., Gündüz, U., Yücel, M., Rakhely, G., Kovacs, L.K. and Eroğlu, İ. 2009. Evaluation of hydrogen production by Rhodobacter sphaeroides O.U.001 and its hupSL deficient mutant using acetate and malate as carbon sources. International Journal of Hydrogen Energy, 34, 2184-2190.
  • Özgür, E., Uyar, B, Öztürk, Y., Yücel, M., Gündüz, U. and Eroğlu, İ. 2010. Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resources, Conservation and Recycling, 54(5), 310-314.
  • Nishikawa, S., Watanabe, K., Tanaka, T., Miyachi, N., Hotta, Y. and Murooka, Y. 1999. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. Journal of Bioscience and Bioengineering, 87(6), 798-804.
  • Kamiyama, H., Hotta, Y., Tanaka, T., Nishikawa, S. and Sasaki, K. 2000. Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium. Seibutsu Kogaku Kaishi, 78, 48-55.
Yıl 2020, Cilt: 7 Sayı: 3, 61 - 68, 05.10.2020
https://doi.org/10.31593/ijeat.738318

Öz

Proje Numarası

BAP-11401112

Kaynakça

  • Kars, G. and Alparslan, Ü. 2013. Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. International Journal of Hydrogen Energy, 38, 14488-14494.
  • Kars, G. and Ceylan, A. 2013. Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. International Journal of Hydrogen Energy, 38, 5573-5579.
  • Al-Mohammedawi, H.H., Znad, H. and Eroğlu, E. 2019. Improvement of photofermentative biohydrogen production using pre-treated brewery wastewater with banana peels waste. International Journal of Hydrogen Energy, 44(5), 2560-2568.
  • Ghimire, A., Valentino, S., Frunzo, L., Pirozzi, F., Lens, P.N.L. and Esposito, G. 2016. Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Bioresource Technology, 217, 157-164.
  • Kwon, S.Y., Jiang, S.N., Zheng, J.H., Choy, H.E. and Min, J.J. 2014. Rhodobacter sphaeroides, A novel tumor-targeting bacteria that emits natural near-infrared fluorescence. Microbiology and Immunology, 58, 172-179.
  • Choudhary, M., Zanhua, X., Fu, Y.X. and Kaplan, S. 2007. Genome analyses of three strains of Rhodobacter sphaeroides: evidence of rapid evolution of chromosome II. Journal of Bacteriology, 189(5), 1914-1921.
  • Jaschke, P.R., Saer, R.G., Noll, S. and Beatty, J.T. 2011. Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods in Enzymology, 497, 519-538.
  • Liang, J. and Burris, H.R. 1988. Hydrogen burst associated with nitrogenase-catalyzed reactions. Proceedings of the National Academy of Sciences, 85, 9446-9450.
  • Ahmed, P.M., Fernández, P.M., de Figueroa, L.I.C. and Pajot, H.F. 2019. Exploitation alternatives of olive mill wastewater: production of value-added compounds useful for industry and agriculture. Biofuel Research Journal, 22, 980-994.
  • Gabrielyan, L., Hakobyan, L. and Trchounian, A. 2016. Comparative effects of Ni(II) and Cu(II) ions and their combinations on redox potential and hydrogen photoproduction by Rhodobacter sphaeroides. Journal of Photochemistry & Photobiology, B: Biology, 164, 271-275.
  • Li, X., Shi, H., Wang, Y., Zhang, S., Chu, J., Zhang, M., Huang, M. and Zhuang, Y. 2011. Effects of vitamins (nicotinic acid, vitamin B1 and biotin) on phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5. International Journal of Hydrogen Energy, 36, 9620-9625.
  • Hakobyan, L., Gabrielyan, L. and Trchounian, A. 2019. Biohydrogen by Rhodobacter sphaeroides during photo-fermentation: Mixed vs. sole carbon sources enhance bacterial growth and H2 production. International Journal of Hydrogen Energy, 44, 674-679.
  • Kim, M.S., Kim, D.H., Cha, J. and Lee, J.K. 2012. Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresource Technology, 116, 179-183.
  • Kars, G., Gündüz, U., Rakhely, G., Yücel, M., Eroğlu, İ. and Kovacs, L.K. 2008. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. International Journal of Hydrogen Energy, 33(12), 3056-3060.
  • Özgür, E., Mars, A.E., Peksel, B., Louwerse, A., Yücel, M., Gündüz, U., Claassen, M.A.P. and Eroğlu, İ., 2010. Biohydrogen production from beet molasses by sequential dark and photofermentation. International Journal of Hydrogen Energy, 35, 511-517.
  • Pascualone, M.J., Costa, M.B.G. and Dalmasso, P.R. 2019. Fermentative biohydrogen production from a novel combination of vermicompost as inoculum and mild heat-pretreated fruit and vegetable waste. Biofuel Research Journal, 23, 1046-1053.
  • Sasaki, K., Watanabe, M., Tanaka, T. and Tanaka, T. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58, 23-29.
  • Biebl, H. and Pfennig, N. Isolation of member of the family Rhodosprillaceae, in: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A. and Schlegel, H.G., The prokaryotes, Springer, New York, 1981, 267-273.
  • Sasaki, K., Tanaka, T., Nishizawa, Y. and Hayashi, M. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Applied Microbiology and Biotechnology, 32, 727-731.
  • Choi, C., Hong, B.S., Sung, H.C., Lee, H.S. and Kim, J.H. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnology Letters, 21, 551-554.
  • Waligorska, M., Seifert, K., Szymanska, K. and Łaniecki, M., 2006. Optimization of activation conditions of Rhodobacter sphaeroides in hydrogen generation process. Journal of Applied Microbiology, 101, 775-784.
  • Mauzerall, D. and Granick, S. 1956. The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. Journal of Biological Chemistry, 219, 435-446.
  • Demiriz, B.O., Kars, G., Yücel, M., Eroğlu, İ. and Gündüz, U. 2019. Hydrogen and poly-β-hydroxybutyric acid production at various acetate concentrations using Rhodobacter capsulatus DSM 1710. International Journal of Hydrogen Energy, 44(32), 17269-17277.
  • Laurinavichene, T. and Tsygankov, A. 2018. Inoculum density and buffer capacity are crucial for H2 photoproduction from acetate by purple bacteria. International Journal of Hydrogen Energy, 43(41), 18873-18882.
  • Kars, G., Gündüz, U., Yücel, M., Rakhely, G., Kovacs, L.K. and Eroğlu, İ. 2009. Evaluation of hydrogen production by Rhodobacter sphaeroides O.U.001 and its hupSL deficient mutant using acetate and malate as carbon sources. International Journal of Hydrogen Energy, 34, 2184-2190.
  • Özgür, E., Uyar, B, Öztürk, Y., Yücel, M., Gündüz, U. and Eroğlu, İ. 2010. Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resources, Conservation and Recycling, 54(5), 310-314.
  • Nishikawa, S., Watanabe, K., Tanaka, T., Miyachi, N., Hotta, Y. and Murooka, Y. 1999. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. Journal of Bioscience and Bioengineering, 87(6), 798-804.
  • Kamiyama, H., Hotta, Y., Tanaka, T., Nishikawa, S. and Sasaki, K. 2000. Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium. Seibutsu Kogaku Kaishi, 78, 48-55.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Gökhan Kars 0000-0002-2507-2305

Ümmühan Alparslan 0000-0002-4107-3420

Proje Numarası BAP-11401112
Yayımlanma Tarihi 5 Ekim 2020
Gönderilme Tarihi 16 Mayıs 2020
Kabul Tarihi 8 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 3

Kaynak Göster

APA Kars, G., & Alparslan, Ü. (2020). Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001. International Journal of Energy Applications and Technologies, 7(3), 61-68. https://doi.org/10.31593/ijeat.738318
AMA Kars G, Alparslan Ü. Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001. IJEAT. Ekim 2020;7(3):61-68. doi:10.31593/ijeat.738318
Chicago Kars, Gökhan, ve Ümmühan Alparslan. “Unraveling Optimum Culture Composition for Hydrogen and 5-Aminolevulinic Acid Production by Rhodobacter Sphaeroides O.U.001”. International Journal of Energy Applications and Technologies 7, sy. 3 (Ekim 2020): 61-68. https://doi.org/10.31593/ijeat.738318.
EndNote Kars G, Alparslan Ü (01 Ekim 2020) Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001. International Journal of Energy Applications and Technologies 7 3 61–68.
IEEE G. Kars ve Ü. Alparslan, “Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001”, IJEAT, c. 7, sy. 3, ss. 61–68, 2020, doi: 10.31593/ijeat.738318.
ISNAD Kars, Gökhan - Alparslan, Ümmühan. “Unraveling Optimum Culture Composition for Hydrogen and 5-Aminolevulinic Acid Production by Rhodobacter Sphaeroides O.U.001”. International Journal of Energy Applications and Technologies 7/3 (Ekim 2020), 61-68. https://doi.org/10.31593/ijeat.738318.
JAMA Kars G, Alparslan Ü. Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001. IJEAT. 2020;7:61–68.
MLA Kars, Gökhan ve Ümmühan Alparslan. “Unraveling Optimum Culture Composition for Hydrogen and 5-Aminolevulinic Acid Production by Rhodobacter Sphaeroides O.U.001”. International Journal of Energy Applications and Technologies, c. 7, sy. 3, 2020, ss. 61-68, doi:10.31593/ijeat.738318.
Vancouver Kars G, Alparslan Ü. Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001. IJEAT. 2020;7(3):61-8.