Araştırma Makalesi
BibTex RIS Kaynak Göster

Drag reduction of ground vehicle by decreasing flow separation with a passive flow control part

Yıl 2024, Cilt: 6 Sayı: 2, 96 - 102, 20.12.2024

Öz

This study focus on reducing the aerodynamic drag force on a ground vehicle model with a spolier model. The spoiler model was designed to delay the flow separation and passive flow control. A 1/15 scaled vehicle model was used in wind tunnel tests. That vehicle model uses in passenger transportation sector. The spoiler model was designed in the SolidWorks® and produced bu using a 3-D printer. The spoiler was mounted on front roof area of vehicle at 10% and 5% (L/H) rates.. The wind tunnel tests were carried out at four different free-flow velocity speeds. The drag coefficient was reduced by 3.93% in model 1 and 2.86% in model 2. Flow separation was delayed and decreased by this flow control part application on vehicle. These drag reductions can decrease the fuel consumption of vehicle models by about 2% at high speeds.

Kaynakça

  • Aftab, S. M. A., Rafie, A. S. M., Razak, N. A., & Ahmad, K. A. (2016). Turbulence model selection for low Reynolds number flows. PLoS ONE, 11(4), e0153755. https://doi.org/10.1371/journal.pone.0153755
  • Bayindirli, C., Akansu, Y. E., & Celik, M. (2020). Experimental and numerical studies on improvement of drag force of a bus model using different spoiler models. International Journal of Heavy Vehicle Systems, 27(6), 743-776.
  • Bayindirli, C., & Celik, M. (2018). Bir minübüs modeli etrafındaki akış yapısının CFD yöntemi ile incelenmesi. In IV International Academic Research Congress (pp. 30 October-3 November). Alanya, Türkiye.
  • Bayindirli, C., & Celik, M. (2022). Experimental optimization of aerodynamic drag coefficient of a minibus model with non-smooth surface plate application. Journal of Engineering Studies and Research, 28(4), 23-29. https://doi.org/10.29081/jesr.v28i3.004
  • Bayindirli, C., & Celik, M. (2023, September 15-17). The experimentally improving of drag coefficient of a minibus model with wing-shaped spoiler model. In 5th International Turkic World Congress on Science and Engineering. Bişkek, Kırgızistan.
  • Bhatnagar, U. R. (2014). Formula 1 race car performance improvement by optimization of the aerodynamic relationship between the front and rear wings (Master’s thesis). The Pennsylvania State University.
  • Çengel, Y. A., & Cimbala, J. M. (2008). Fundamentals of fluid mechanics and applications. Güven Bilimsel.
  • Çiftçi, H., Bayındırlı, C., & Örs, İ. (2023). Experimental investigation of spoiler application in an SUV-type vehicle. International Journal of Energy Applications and Technologies, 10(1), 1-5.
  • Kajiwara, S. (2017). Passive variable rear-wing aerodynamics of an open-wheel racing car. Automotive and Engine Technology, 2, 107–117. https://doi.org/10.1007/s41104-017-0021-9
  • Kishore, K. S., Pendyala, S., & Dwivedi, Y. D. (2022). A review on base drag reduction methods. Graduate Research in Engineering and Technology (GRET), 1(5), 52-60. https://doi.org/10.47893/GRET.2022.1073
  • Langtry, R. B., & Menter, F. R. (2009). Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal, 47(12).
  • McBeath, S. (2006). Competition car aerodynamics: A practical handbook. Haynes Publishing.
  • Palanivendhan, M., Chandradass, J., Saravanan, C., Philip, J., & Sharan, R. (2021). Reduction in aerodynamic drag acting on a commercial vehicle by using a dimpled surface. Materials Today: Proceedings, 45, 7072-7078.
  • Smith, A. (1974, August 12-14). High-lift aerodynamics 37th Wright Brothers Lecture. In Proceedings of the 6th Aircraft Design, Flight Test and Operations Meeting (Vol. 12). Los Angeles, CA, USA. https://doi.org/10.2514/6.1974-939
  • Wood, R. M., & Bauer, S. X. S. (2003). Simple and low-cost aerodynamic drag reduction devices for tractor-trailer trucks. SAE Technical Paper, 01(3377), 1-18.
  • Wordley, S., McArthur, D., Phersson, L., Tudball Smith, D., & Burton, D. (2014, December 8-11). Development of a drag reduction system (DRS) for multi-element race car wings. In Proceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014. Melbourne, Australia.
  • Yadav, R., Islam, A., & Chaturvedi, R. (2021). Efficient reduction of the consumption of fuel in road vehicles using aerodynamic behavior in CDF analysis. Materials Today: Proceedings, 45, 2773-2776.
  • Yanqing, W., Ding, W., Yuju, W., Yuan, M., Lei, C., & Jiadao, W. (2023). Aerodynamic drag reduction on speed skating helmet by surface structures. Applied Sciences, 13(130), Article 130. https://doi.org/10.3390/app13010130

Bir pasif akış kontrol parçası ile akış ayrılmasını azaltarak kara taşıtının sürükleme kuvvetinin azaltması

Yıl 2024, Cilt: 6 Sayı: 2, 96 - 102, 20.12.2024

Öz

Bu çalışma, bir zemin aracı modelinde spoiler modeli kullanarak aerodinamik sürükleme kuvvetini azaltmaya odaklanmaktadır. Spoiler modeli, akış ayrılmasını geciktirmek ve pasif akış kontrolü sağlamak amacıyla tasarlanmıştır. Rüzgar tüneli testlerinde 1/15 ölçekli bir araç modeli kullanılmıştır. Bu araç modeli, yolcu taşımacılığı sektöründe kullanılmaktadır. Spoiler modeli, SolidWorks® programında tasarlanmış ve 3D yazıcı kullanılarak üretilmiştir. Spoiler, aracın ön tavan bölgesine %10 ve %5 (L/H) oranlarında monte edilmiştir. Rüzgar tüneli testleri, dört farklı serbest akış hızıyla gerçekleştirilmiştir. Sürükleme katsayısı model 1'de %3,93 ve model 2'de %2,86 oranında azaltılmıştır. Bu akış kontrol parçası uygulaması, araç üzerindeki akış ayrılmasını geciktirmiş ve azaltmıştır. Bu sürükleme azaltmaları, yüksek hızlarda araç modellerinin yakıt tüketimini yaklaşık %2 oranında azaltabilir.

Kaynakça

  • Aftab, S. M. A., Rafie, A. S. M., Razak, N. A., & Ahmad, K. A. (2016). Turbulence model selection for low Reynolds number flows. PLoS ONE, 11(4), e0153755. https://doi.org/10.1371/journal.pone.0153755
  • Bayindirli, C., Akansu, Y. E., & Celik, M. (2020). Experimental and numerical studies on improvement of drag force of a bus model using different spoiler models. International Journal of Heavy Vehicle Systems, 27(6), 743-776.
  • Bayindirli, C., & Celik, M. (2018). Bir minübüs modeli etrafındaki akış yapısının CFD yöntemi ile incelenmesi. In IV International Academic Research Congress (pp. 30 October-3 November). Alanya, Türkiye.
  • Bayindirli, C., & Celik, M. (2022). Experimental optimization of aerodynamic drag coefficient of a minibus model with non-smooth surface plate application. Journal of Engineering Studies and Research, 28(4), 23-29. https://doi.org/10.29081/jesr.v28i3.004
  • Bayindirli, C., & Celik, M. (2023, September 15-17). The experimentally improving of drag coefficient of a minibus model with wing-shaped spoiler model. In 5th International Turkic World Congress on Science and Engineering. Bişkek, Kırgızistan.
  • Bhatnagar, U. R. (2014). Formula 1 race car performance improvement by optimization of the aerodynamic relationship between the front and rear wings (Master’s thesis). The Pennsylvania State University.
  • Çengel, Y. A., & Cimbala, J. M. (2008). Fundamentals of fluid mechanics and applications. Güven Bilimsel.
  • Çiftçi, H., Bayındırlı, C., & Örs, İ. (2023). Experimental investigation of spoiler application in an SUV-type vehicle. International Journal of Energy Applications and Technologies, 10(1), 1-5.
  • Kajiwara, S. (2017). Passive variable rear-wing aerodynamics of an open-wheel racing car. Automotive and Engine Technology, 2, 107–117. https://doi.org/10.1007/s41104-017-0021-9
  • Kishore, K. S., Pendyala, S., & Dwivedi, Y. D. (2022). A review on base drag reduction methods. Graduate Research in Engineering and Technology (GRET), 1(5), 52-60. https://doi.org/10.47893/GRET.2022.1073
  • Langtry, R. B., & Menter, F. R. (2009). Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal, 47(12).
  • McBeath, S. (2006). Competition car aerodynamics: A practical handbook. Haynes Publishing.
  • Palanivendhan, M., Chandradass, J., Saravanan, C., Philip, J., & Sharan, R. (2021). Reduction in aerodynamic drag acting on a commercial vehicle by using a dimpled surface. Materials Today: Proceedings, 45, 7072-7078.
  • Smith, A. (1974, August 12-14). High-lift aerodynamics 37th Wright Brothers Lecture. In Proceedings of the 6th Aircraft Design, Flight Test and Operations Meeting (Vol. 12). Los Angeles, CA, USA. https://doi.org/10.2514/6.1974-939
  • Wood, R. M., & Bauer, S. X. S. (2003). Simple and low-cost aerodynamic drag reduction devices for tractor-trailer trucks. SAE Technical Paper, 01(3377), 1-18.
  • Wordley, S., McArthur, D., Phersson, L., Tudball Smith, D., & Burton, D. (2014, December 8-11). Development of a drag reduction system (DRS) for multi-element race car wings. In Proceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014. Melbourne, Australia.
  • Yadav, R., Islam, A., & Chaturvedi, R. (2021). Efficient reduction of the consumption of fuel in road vehicles using aerodynamic behavior in CDF analysis. Materials Today: Proceedings, 45, 2773-2776.
  • Yanqing, W., Ding, W., Yuju, W., Yuan, M., Lei, C., & Jiadao, W. (2023). Aerodynamic drag reduction on speed skating helmet by surface structures. Applied Sciences, 13(130), Article 130. https://doi.org/10.3390/app13010130
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Otomotiv Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Cihan Bayındırlı 0000-0001-9199-9670

Mehmet Çelik 0000-0002-3390-1716

Erken Görünüm Tarihi 25 Ağustos 2024
Yayımlanma Tarihi 20 Aralık 2024
Gönderilme Tarihi 13 Temmuz 2024
Kabul Tarihi 20 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Bayındırlı, C., & Çelik, M. (2024). Drag reduction of ground vehicle by decreasing flow separation with a passive flow control part. International Journal of Engineering Design and Technology, 6(2), 96-102.