Araştırma Makalesi
BibTex RIS Kaynak Göster

Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis

Yıl 2024, , 1 - 11, 15.02.2024
https://doi.org/10.26833/ijeg.1192118

Öz

In this work, an automated lineament analysis was carried out to search for earthquake precursors for the territory of the Almalyk-Angren industrial zone in Uzbekistan. The seven events with a magnitude of about 3 were selected for analysis. The Landsat 8 satellite images were processed using the automated lineament detection method in the LEFA software. The processing steps included detecting line elements in raster images, calculating the characteristics of the spatial distribution of line elements, and combining collinear linear elements into lineaments. The analyses of the cyclicality of precursors before and after earthquakes were based on the study of the distribution of the lineament trend in the study area using rose diagrams and lineament density maps. The results showed a change in the dynamics of the lineament structure. The statistics of the number of lineaments showed that their increase begins almost 20 days before the event, reaches its maximum about 1 – 2 days before the earthquake, decreases starting from 14 days after the earthquake, and has a minimum value of 1 – 2 months. The main trends observed in the lineament map showed the dominant trend in NS, WE, NW-SE directions.

Kaynakça

  • Kalita, S., & Chetia, B. (2020). A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude. International Journal of Engineering and Geosciences, 5(2), 94-99. https://doi.org/10.26833/ijeg.614856
  • Konak, H., Nehbit, P. K., Karaöz, A., & Cerit, F. (2020). Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. International Journal of Engineering and Geosciences, 5(1), 49-59. https://doi.org/10.26833/ijeg.581584
  • Nehbit, P. K., & Konak, H. (2020). The global and local robustness analysis in geodetic networks. International Journal of Engineering and Geosciences, 5(1), 42-48. https://doi.org/10.26833/ijeg.581568
  • Al-Nahmi, F., Alami, O. B., Baidder, L., Khanbari, K., Rhinane, H., & Hilali, A. (2016). Using remote sensing for lineament extraction in Al Maghrabah area-Hajjah, Yemen. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 137-142. https://doi.org/10.5194/isprs-archives-XLII-2-W1-137-2016
  • Alshayef, M. S., Mohammed, A. M., Javed, A., & Albaroot, M. A. (2017). Manual and automatic extraction of lineaments from multispectral image in part of Al-Rawdah, Shabwah, Yemen by using remote sensing and GIS technology. International Journal of New Technology and Research, 3(2), 67-73.
  • Bondur, V.G. & Zverev, A.T. (2006). The physical nature of lineaments recorded on space images during monitoring of seismic hazard areas. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 3(2), 177-183. (in Russian)
  • Nath, B., Niu, Z., Acharjee, S., & Qiao, H. (2017). Monitoring the geodynamic behaviour of earthquake using Landsat 8-OLI time series data: case of Gorkha and Imphal. Natural Hazards and Earth System Sciences Discussions, 1-26. https://doi.org/10.5194/nhess-2017-10
  • Zakharov, V. N., Zverev, A. V., Zverev, A. T., Malinnikov, V. A., & Malinnikova, O. N. (2017). Application of automated lineament analysis of satellite images in modern geodynamics research: A case study. Russian Journal of Earth Sciences, 17(3), 1-15. https://doi.org/10.2205/2017es000599
  • Elmahdy, S. I., & Mohamed, M. M. (2016). Mapping of tecto-lineaments and investigate their association with earthquakes in Egypt: a hybrid approach using remote sensing data. Geomatics, Natural Hazards and Risk, 7(2), 600-619. https://doi.org/10.1080/19475705.2014.996612
  • Sharifia, A., Rajabi, M. A., & Moghaddam, N. F. (2008). Studying the Earthquake Effects on Lineament Density Changes by Remote Sensing Technology. International Proceedings GEOBIA.
  • Mogaji, K. A., Aboyeji, O. S., & Omosuyi, G. O. (2011). Mapping of lineaments for groundwater targeting in the basement complex region of Ondo State, Nigeria, using remote sensing and geographic information system (GIS) techniques. International Journal of Water Resources and Environmental Engineering, 3(7), 150-160.
  • Bondur, V. G., Zverev, A. T., & Gaponova, E. V. (2019). Precursor variability of lineament systems detected using satellite images during strong earthquakes. Izvestiya, Atmospheric and Oceanic Physics, 55, 1283-1291. https://doi.org/10.1134/S0001433819090123
  • Bondur, V.G., Zverev, A.T., Gaponova, E.V. & Zima, A.L. (2012). Space methods in predictive cyclic dynamics of lineament system before preparation of the earthquakes. Issledovanie Zemli iz Kosmosa, 1, 3-20. (in Russian)
  • Vashchillov, Yu.Ya., Kalinina, L.Yu. (2008). Deep-Seated Faults and Lineaments: The Location of Earthquake Epicenters in the Russian Northeast on Land. Vulkanologiya i seysmologiya, 3, 19–31. (in Russian)
  • Reddy, R. K. T. (1991). Digital analysis of lineaments—a test study on south India. Computers & Geosciences, 17(4), 549-559. https://doi.org/10.1016/0098-3004(91)90113-R
  • Sichugova, L., & Fazilova, D. (2021). The lineaments as one of the precursors of earthquakes: A case study of Tashkent geodynamical polygon in Uzbekistan. Geodesy and Geodynamics, 12(6), 399-404. https://doi.org/10.1016/j.geog.2021.08.002
  • Singh, V. P., & Singh, R. P. (2005). Changes in stress pattern around epicentral region of Bhuj earthquake of 26 January 2001. Geophysical Research Letters, 32(24). https://doi.org/10.1029/2005GL023912
  • Arellano-Baeza, A. A., Zverev, A. T., & Malinnikov, V. A. (2006). Study of changes in the lineament structure, caused by earthquakes in South America by applying the lineament analysis to the Aster (Terra) satellite data. Advances in Space Research, 37(4), 690-697. https://doi.org/10.1016/j.asr.2005.07.068
  • Busygin, B. S., & Nikulin, S. L. (2016). The relationships between the lineaments in satellite images and earthquake epicenters within the Baikal Rift Zone. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13(4), 219-230. https://doi.org/10.21046/2070-7401-2016-13-15-219-230
  • Zlatopolsky, A. A. (1992). Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis—experimental results. Computers & Geosciences, 18(9), 1121-1126. https://doi.org/10.1016/0098-3004(92)90036-Q
  • Rahnama, M., & Gloaguen, R. (2014). Teclines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 2: Line segments linking and merging. Remote Sensing, 6(11), 11468-11493. https://doi.org/10.3390/rs61111468
  • Shevyrev, S.L. (2018). LEFA software: an automatized structural analysis of remote sensing imagery in Matlab environment. Earth Sciences, 10, 138-143. (in Russian)
  • Mamadjanov, Yu., Aminov, J., Hodzhiev, A., Khalimov G. (2017). Late Paleozoic shoshonite – latite - monzonitoid magmatism of the Chatkal-Kurama zone of the Middle Tien Shan: geology, petrogeochemistry and potential ore potential. International Proceedings, Actual problems of geology, geophysics and metallogeny, 3, 46-49. (in Russian)
  • Republican Center for Seismic Predictive Monitoring of the Ministry of Emergency Situations of the Republic of Uzbekistan (2022). https://rcsm.fvv.uz/ru/catalog_col
  • USGS EROS Archive - Landsat Archives - Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-1 Data Products. By Earth Resources Observation and Science (EROS) Center July 18, 2018. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-oli-operational-land-imager-and
  • World Geologic Maps (2023). https://certmapper.cr.usgs.gov/data/apps/world-maps/
  • Bakiyev, M. H., Khamidov, L. A., Ibragimov, A. H. (2001). Stress concentration near local crustal inhomogeneities. Inland Earthquake. China, 15 (4), 376–384. (in Russian)
  • Yarmuhamedov, A. R. (1988). Morphostructure of the Middle Tien Shan and Its Relationship with Seismicity, Tashkent “FAN”, p. 163. (in Russian)
  • Khamidov, L. A. (2010). Study of stresses fields of Chatkal`s mountain zone of West Tien Shan. Geodinamika, 1(9), 57-66
  • Fazilova, D. S., & Sichugova, L. V. (2021). Deformation analysis based on GNSS measurements in Tashkent region. In E3S Web of Conferences, 227, 04002. https://doi.org/10.1051/e3sconf/202122704002
  • United States Geological Survey (USGS) Earth Explorer (2023). https://earthexplorer.usgs.gov
  • Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (2023). https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites
  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6), 679-698.
  • Argialas, D. P., & Mavrantza, O. D. (2004). Comparison of edge detection and Hough transform techniques for the extraction of geologic features. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(Part XXX).
Yıl 2024, , 1 - 11, 15.02.2024
https://doi.org/10.26833/ijeg.1192118

Öz

Kaynakça

  • Kalita, S., & Chetia, B. (2020). A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude. International Journal of Engineering and Geosciences, 5(2), 94-99. https://doi.org/10.26833/ijeg.614856
  • Konak, H., Nehbit, P. K., Karaöz, A., & Cerit, F. (2020). Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. International Journal of Engineering and Geosciences, 5(1), 49-59. https://doi.org/10.26833/ijeg.581584
  • Nehbit, P. K., & Konak, H. (2020). The global and local robustness analysis in geodetic networks. International Journal of Engineering and Geosciences, 5(1), 42-48. https://doi.org/10.26833/ijeg.581568
  • Al-Nahmi, F., Alami, O. B., Baidder, L., Khanbari, K., Rhinane, H., & Hilali, A. (2016). Using remote sensing for lineament extraction in Al Maghrabah area-Hajjah, Yemen. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 137-142. https://doi.org/10.5194/isprs-archives-XLII-2-W1-137-2016
  • Alshayef, M. S., Mohammed, A. M., Javed, A., & Albaroot, M. A. (2017). Manual and automatic extraction of lineaments from multispectral image in part of Al-Rawdah, Shabwah, Yemen by using remote sensing and GIS technology. International Journal of New Technology and Research, 3(2), 67-73.
  • Bondur, V.G. & Zverev, A.T. (2006). The physical nature of lineaments recorded on space images during monitoring of seismic hazard areas. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 3(2), 177-183. (in Russian)
  • Nath, B., Niu, Z., Acharjee, S., & Qiao, H. (2017). Monitoring the geodynamic behaviour of earthquake using Landsat 8-OLI time series data: case of Gorkha and Imphal. Natural Hazards and Earth System Sciences Discussions, 1-26. https://doi.org/10.5194/nhess-2017-10
  • Zakharov, V. N., Zverev, A. V., Zverev, A. T., Malinnikov, V. A., & Malinnikova, O. N. (2017). Application of automated lineament analysis of satellite images in modern geodynamics research: A case study. Russian Journal of Earth Sciences, 17(3), 1-15. https://doi.org/10.2205/2017es000599
  • Elmahdy, S. I., & Mohamed, M. M. (2016). Mapping of tecto-lineaments and investigate their association with earthquakes in Egypt: a hybrid approach using remote sensing data. Geomatics, Natural Hazards and Risk, 7(2), 600-619. https://doi.org/10.1080/19475705.2014.996612
  • Sharifia, A., Rajabi, M. A., & Moghaddam, N. F. (2008). Studying the Earthquake Effects on Lineament Density Changes by Remote Sensing Technology. International Proceedings GEOBIA.
  • Mogaji, K. A., Aboyeji, O. S., & Omosuyi, G. O. (2011). Mapping of lineaments for groundwater targeting in the basement complex region of Ondo State, Nigeria, using remote sensing and geographic information system (GIS) techniques. International Journal of Water Resources and Environmental Engineering, 3(7), 150-160.
  • Bondur, V. G., Zverev, A. T., & Gaponova, E. V. (2019). Precursor variability of lineament systems detected using satellite images during strong earthquakes. Izvestiya, Atmospheric and Oceanic Physics, 55, 1283-1291. https://doi.org/10.1134/S0001433819090123
  • Bondur, V.G., Zverev, A.T., Gaponova, E.V. & Zima, A.L. (2012). Space methods in predictive cyclic dynamics of lineament system before preparation of the earthquakes. Issledovanie Zemli iz Kosmosa, 1, 3-20. (in Russian)
  • Vashchillov, Yu.Ya., Kalinina, L.Yu. (2008). Deep-Seated Faults and Lineaments: The Location of Earthquake Epicenters in the Russian Northeast on Land. Vulkanologiya i seysmologiya, 3, 19–31. (in Russian)
  • Reddy, R. K. T. (1991). Digital analysis of lineaments—a test study on south India. Computers & Geosciences, 17(4), 549-559. https://doi.org/10.1016/0098-3004(91)90113-R
  • Sichugova, L., & Fazilova, D. (2021). The lineaments as one of the precursors of earthquakes: A case study of Tashkent geodynamical polygon in Uzbekistan. Geodesy and Geodynamics, 12(6), 399-404. https://doi.org/10.1016/j.geog.2021.08.002
  • Singh, V. P., & Singh, R. P. (2005). Changes in stress pattern around epicentral region of Bhuj earthquake of 26 January 2001. Geophysical Research Letters, 32(24). https://doi.org/10.1029/2005GL023912
  • Arellano-Baeza, A. A., Zverev, A. T., & Malinnikov, V. A. (2006). Study of changes in the lineament structure, caused by earthquakes in South America by applying the lineament analysis to the Aster (Terra) satellite data. Advances in Space Research, 37(4), 690-697. https://doi.org/10.1016/j.asr.2005.07.068
  • Busygin, B. S., & Nikulin, S. L. (2016). The relationships between the lineaments in satellite images and earthquake epicenters within the Baikal Rift Zone. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13(4), 219-230. https://doi.org/10.21046/2070-7401-2016-13-15-219-230
  • Zlatopolsky, A. A. (1992). Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis—experimental results. Computers & Geosciences, 18(9), 1121-1126. https://doi.org/10.1016/0098-3004(92)90036-Q
  • Rahnama, M., & Gloaguen, R. (2014). Teclines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 2: Line segments linking and merging. Remote Sensing, 6(11), 11468-11493. https://doi.org/10.3390/rs61111468
  • Shevyrev, S.L. (2018). LEFA software: an automatized structural analysis of remote sensing imagery in Matlab environment. Earth Sciences, 10, 138-143. (in Russian)
  • Mamadjanov, Yu., Aminov, J., Hodzhiev, A., Khalimov G. (2017). Late Paleozoic shoshonite – latite - monzonitoid magmatism of the Chatkal-Kurama zone of the Middle Tien Shan: geology, petrogeochemistry and potential ore potential. International Proceedings, Actual problems of geology, geophysics and metallogeny, 3, 46-49. (in Russian)
  • Republican Center for Seismic Predictive Monitoring of the Ministry of Emergency Situations of the Republic of Uzbekistan (2022). https://rcsm.fvv.uz/ru/catalog_col
  • USGS EROS Archive - Landsat Archives - Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-1 Data Products. By Earth Resources Observation and Science (EROS) Center July 18, 2018. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-oli-operational-land-imager-and
  • World Geologic Maps (2023). https://certmapper.cr.usgs.gov/data/apps/world-maps/
  • Bakiyev, M. H., Khamidov, L. A., Ibragimov, A. H. (2001). Stress concentration near local crustal inhomogeneities. Inland Earthquake. China, 15 (4), 376–384. (in Russian)
  • Yarmuhamedov, A. R. (1988). Morphostructure of the Middle Tien Shan and Its Relationship with Seismicity, Tashkent “FAN”, p. 163. (in Russian)
  • Khamidov, L. A. (2010). Study of stresses fields of Chatkal`s mountain zone of West Tien Shan. Geodinamika, 1(9), 57-66
  • Fazilova, D. S., & Sichugova, L. V. (2021). Deformation analysis based on GNSS measurements in Tashkent region. In E3S Web of Conferences, 227, 04002. https://doi.org/10.1051/e3sconf/202122704002
  • United States Geological Survey (USGS) Earth Explorer (2023). https://earthexplorer.usgs.gov
  • Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (2023). https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites
  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6), 679-698.
  • Argialas, D. P., & Mavrantza, O. D. (2004). Comparison of edge detection and Hough transform techniques for the extraction of geologic features. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(Part XXX).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Jeomatik Mühendisliği (Diğer)
Bölüm Research Article
Yazarlar

Lola Sichugova 0000-0002-4042-4102

Dilbarkhon Fazilova 0000-0002-7002-189X

Erken Görünüm Tarihi 2 Ocak 2024
Yayımlanma Tarihi 15 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Sichugova, L., & Fazilova, D. (2024). Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. International Journal of Engineering and Geosciences, 9(1), 1-11. https://doi.org/10.26833/ijeg.1192118
AMA Sichugova L, Fazilova D. Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. IJEG. Şubat 2024;9(1):1-11. doi:10.26833/ijeg.1192118
Chicago Sichugova, Lola, ve Dilbarkhon Fazilova. “Study of the Seismic Activity of the Almalyk-Angren Industrial Zone Based on Lineament Analysis”. International Journal of Engineering and Geosciences 9, sy. 1 (Şubat 2024): 1-11. https://doi.org/10.26833/ijeg.1192118.
EndNote Sichugova L, Fazilova D (01 Şubat 2024) Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. International Journal of Engineering and Geosciences 9 1 1–11.
IEEE L. Sichugova ve D. Fazilova, “Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis”, IJEG, c. 9, sy. 1, ss. 1–11, 2024, doi: 10.26833/ijeg.1192118.
ISNAD Sichugova, Lola - Fazilova, Dilbarkhon. “Study of the Seismic Activity of the Almalyk-Angren Industrial Zone Based on Lineament Analysis”. International Journal of Engineering and Geosciences 9/1 (Şubat 2024), 1-11. https://doi.org/10.26833/ijeg.1192118.
JAMA Sichugova L, Fazilova D. Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. IJEG. 2024;9:1–11.
MLA Sichugova, Lola ve Dilbarkhon Fazilova. “Study of the Seismic Activity of the Almalyk-Angren Industrial Zone Based on Lineament Analysis”. International Journal of Engineering and Geosciences, c. 9, sy. 1, 2024, ss. 1-11, doi:10.26833/ijeg.1192118.
Vancouver Sichugova L, Fazilova D. Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. IJEG. 2024;9(1):1-11.