Research Article
BibTex RIS Cite

Morphometric Analysis of Saz-Çayırova Drainage Basin using Geographic Information Systems and Different Digital Elevation Models

Year 2022, Volume: 9 Issue: 2, 177 - 186, 02.06.2022
https://doi.org/10.30897/ijegeo.1079851

Abstract

Drainage basin/watershed analysis based on morphometric parameters has an essential role in watershed management and planning. Reliable delineation of watersheds and drainage networks is critical for hydrological and geomorphological studies. Since access to high-resolution digital elevation models (DEMs) and digital surface models (DSMs) is costly, many researchers need to evaluate low-resolution open-source products. Several data sources produced from different surveying techniques are used in the morphometric analysis. In this study, five different datasets such as Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM, Shuttle Radar Topography Mission (SRTM) DEM, Advanced Land Observing Satellite (ALOS) DSM, National Aeronautics and Space Administration (NASA) DEM, and a DEM from topographic maps (TOPO DEM), were investigated based on morphometric parameters. The tests was carried out in the Saz-Çayırova Basin, which is one of the critical urbanization and industrialization regions of Kocaeli, Turkey. In this study, the TOPO DEM, whose horizontal resolution is 30 m, was produced from 1:25K scaled digitized topographical maps. It was used for comparative analysis, as in all DEMs sources. The morphometric parameters' result of the TOPO DEM was used as the reference data for comparing the results of the other DEMs sources. In addition, the mean absolute percentage error (MAPE) was used to compute the accuracy between the freely available DEMs and the TOPO DEM for each morphometric parameter. The outcomes of this study reveal that the most consistent results with the TOPO DEM are provided by SRTM DEM, following the NASA DEM.

Supporting Institution

-

Project Number

-

References

  • Bildirici, İ. Ö., & Abbak, R. A. (2017). Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(1), 16-25.
  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology, McGraw-Hill Book Company, New York.
  • Crippen, R., Buckley, S., Agram, P., Belz, E., Gurrola, E., Hensley, S., Kobrick, M., Lavalle, M., Martin, J., Neumann, M., Nguyen, Q., Rosen, P., Shimada, J., Simard, M., & Tung, W., (2016). Nasadem global elevation model: methods and progress. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B4, 125–128.
  • Esper Angillieri, M. Y. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental geology, 55(1), 107-111.
  • Gessler, P., Pike, R., MacMillan, R. A., Hengl, T., & Reuter, H. I. (2009). The future of geomorphometry. Developments in Soil Science, 33, 637-652.
  • Gravelius, H., (1914). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde (Compendium of Hydrology, vol. I. Rivers, in German). Germany: Goschen, Berlin.
  • Gülgen, F. (2017). A stream ordering approach based on network analysis operations. Geocarto International, 32(3), 322-333.
  • Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American geophysical union, 13(1), 350-361.
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin, 56(3), 275-370.
  • Jenson, S. K. (1991). Applications of hydrologic information automatically extracted from digital elevation models. Hydrological processes, 5(1), 31-44.
  • JPL (2021). Shuttle radar topography mission. https://www2.jpl.nasa.gov/srtm/, (Erişim Tarihi: 10 Ocak 2022).
  • Karabulut, M. S., & Özdemir, H. (2019). Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environmental Earth Sciences, 78(18), 1-14.
  • Kumari, P., Kumari, R., & Kumar, D. (2021). Geospatial approach to evaluate the morphometry of Sabarmati River Basin, India. Arabian Journal of Geosciences, 14(3), 1-13.
  • Mark, D. M. (1983). Relations between field-surveyed channel networks and map-based geomorphometric measures, Inez, Kentucky. Annals of the Association of American Geographers, 73(3), 358-372.
  • MTA (2010). Maden Tetkik ve Arama Doğal Kaynaklar ve Ekonomi Bülteni, https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/kutuphane/ekonomi-bultenleri/bulten_2010_10.pdf, (Erişim Tarihi: 10 Ocak 2022).
  • O'Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3), 323-344.
  • Olivera, F., Furnans, J., Maidment, D.R., Djokic, D., Ye, Z., (2002). Arc Hydro: GIS for water resources, in: Maidment, D.R. (Eds.), Redlands: ESRI Press.
  • Oruc, H. N., Çelen, M., Gülgen, F., Öncel, M. S., Vural, S., & Kilic, B. (2020). Sensitivity of the SWAT Model to Soil Data Parameterization; Case Study in Saz-Çayırova Stream, Turkey. In: 5th EurAsia Waste Management Symposium, pp.503-513. Istanbul-Turkey.
  • Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental geology, 56(7), 1405-1415.
  • Pavanelli, D., Cavazza, C., Lavrnić, S., & Toscano, A. (2019). The long-term effects of land use and climate changes on the hydro-morphology of the Reno river catchment (Northern Italy). Water, 11(9), 1831.
  • Pike, R. J. (2000). Geomorphometry-diversity in quantitative surface analysis. Progress in physical geography, 24(1), 1-20.
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy. New Jersey. GSA Bulletin 67(5):597–646.
  • Shaikh, M., Yadav, S., & Manekar, V. (2021). Accuracy assessment of different open-source digital elevation model through morphometric analysis for a semi-arid river basin in the western part of India. Journal of Geovisualization and Spatial Analysis, 5(2), 1-21.
  • Sharifi, S. & Razaz, M. (2014). A new methodology for deriving regional time of concentration equations using GIS and genetic programming. CUNY Academic Works.
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American journal of Science, 248(9), 655-668.
  • Sreedevi, P. D., Owais, S. H. H. K., Khan, H. H., & Ahmed, S. (2009). Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of the geological society of india, 73(4), 543-552.
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920.
  • Strahler, A. N. (1958). Dimensional analysis applied to fluvially eroded landforms. Geological Society of America Bulletin, 69(3), 279-300.
  • Strahler A.N. (1964). Quantitative geomorphology of drainage basin and channel networks. In Chow VT, editor. Handbook of applied hydrology. New York, NY: McGraw Hill; p. 4–76.
  • Sukristiyanti, S., Maria, R., & Lestiana, H. (2018, February). Watershed-based morphometric analysis: a review. In IOP conference series: earth and environmental science (Vol. 118, No. 1, p. 012028). IOP Publishing.
  • Tachikawa, T., Hato, M., Kaku, M., & Iwasaki, A. (2011, July). Characteristics of ASTER GDEM version 2. In 2011 IEEE international geoscience and remote sensing symposium (pp. 3657-3660). IEEE.
  • Thomas, J., & Prasannakumar, V. (2015). Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto International, 30(3), 346-364.
  • Tobler, W. (2000). The development of analytical cartography: A personal note. Cartography and Geographic Information Science, 27(3), 189-194.
  • Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., & Kmoch, A. (2020). Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 12(21), 3482.
Year 2022, Volume: 9 Issue: 2, 177 - 186, 02.06.2022
https://doi.org/10.30897/ijegeo.1079851

Abstract

Project Number

-

References

  • Bildirici, İ. Ö., & Abbak, R. A. (2017). Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(1), 16-25.
  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology, McGraw-Hill Book Company, New York.
  • Crippen, R., Buckley, S., Agram, P., Belz, E., Gurrola, E., Hensley, S., Kobrick, M., Lavalle, M., Martin, J., Neumann, M., Nguyen, Q., Rosen, P., Shimada, J., Simard, M., & Tung, W., (2016). Nasadem global elevation model: methods and progress. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B4, 125–128.
  • Esper Angillieri, M. Y. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental geology, 55(1), 107-111.
  • Gessler, P., Pike, R., MacMillan, R. A., Hengl, T., & Reuter, H. I. (2009). The future of geomorphometry. Developments in Soil Science, 33, 637-652.
  • Gravelius, H., (1914). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde (Compendium of Hydrology, vol. I. Rivers, in German). Germany: Goschen, Berlin.
  • Gülgen, F. (2017). A stream ordering approach based on network analysis operations. Geocarto International, 32(3), 322-333.
  • Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American geophysical union, 13(1), 350-361.
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin, 56(3), 275-370.
  • Jenson, S. K. (1991). Applications of hydrologic information automatically extracted from digital elevation models. Hydrological processes, 5(1), 31-44.
  • JPL (2021). Shuttle radar topography mission. https://www2.jpl.nasa.gov/srtm/, (Erişim Tarihi: 10 Ocak 2022).
  • Karabulut, M. S., & Özdemir, H. (2019). Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environmental Earth Sciences, 78(18), 1-14.
  • Kumari, P., Kumari, R., & Kumar, D. (2021). Geospatial approach to evaluate the morphometry of Sabarmati River Basin, India. Arabian Journal of Geosciences, 14(3), 1-13.
  • Mark, D. M. (1983). Relations between field-surveyed channel networks and map-based geomorphometric measures, Inez, Kentucky. Annals of the Association of American Geographers, 73(3), 358-372.
  • MTA (2010). Maden Tetkik ve Arama Doğal Kaynaklar ve Ekonomi Bülteni, https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/kutuphane/ekonomi-bultenleri/bulten_2010_10.pdf, (Erişim Tarihi: 10 Ocak 2022).
  • O'Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3), 323-344.
  • Olivera, F., Furnans, J., Maidment, D.R., Djokic, D., Ye, Z., (2002). Arc Hydro: GIS for water resources, in: Maidment, D.R. (Eds.), Redlands: ESRI Press.
  • Oruc, H. N., Çelen, M., Gülgen, F., Öncel, M. S., Vural, S., & Kilic, B. (2020). Sensitivity of the SWAT Model to Soil Data Parameterization; Case Study in Saz-Çayırova Stream, Turkey. In: 5th EurAsia Waste Management Symposium, pp.503-513. Istanbul-Turkey.
  • Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental geology, 56(7), 1405-1415.
  • Pavanelli, D., Cavazza, C., Lavrnić, S., & Toscano, A. (2019). The long-term effects of land use and climate changes on the hydro-morphology of the Reno river catchment (Northern Italy). Water, 11(9), 1831.
  • Pike, R. J. (2000). Geomorphometry-diversity in quantitative surface analysis. Progress in physical geography, 24(1), 1-20.
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy. New Jersey. GSA Bulletin 67(5):597–646.
  • Shaikh, M., Yadav, S., & Manekar, V. (2021). Accuracy assessment of different open-source digital elevation model through morphometric analysis for a semi-arid river basin in the western part of India. Journal of Geovisualization and Spatial Analysis, 5(2), 1-21.
  • Sharifi, S. & Razaz, M. (2014). A new methodology for deriving regional time of concentration equations using GIS and genetic programming. CUNY Academic Works.
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American journal of Science, 248(9), 655-668.
  • Sreedevi, P. D., Owais, S. H. H. K., Khan, H. H., & Ahmed, S. (2009). Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of the geological society of india, 73(4), 543-552.
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920.
  • Strahler, A. N. (1958). Dimensional analysis applied to fluvially eroded landforms. Geological Society of America Bulletin, 69(3), 279-300.
  • Strahler A.N. (1964). Quantitative geomorphology of drainage basin and channel networks. In Chow VT, editor. Handbook of applied hydrology. New York, NY: McGraw Hill; p. 4–76.
  • Sukristiyanti, S., Maria, R., & Lestiana, H. (2018, February). Watershed-based morphometric analysis: a review. In IOP conference series: earth and environmental science (Vol. 118, No. 1, p. 012028). IOP Publishing.
  • Tachikawa, T., Hato, M., Kaku, M., & Iwasaki, A. (2011, July). Characteristics of ASTER GDEM version 2. In 2011 IEEE international geoscience and remote sensing symposium (pp. 3657-3660). IEEE.
  • Thomas, J., & Prasannakumar, V. (2015). Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto International, 30(3), 346-364.
  • Tobler, W. (2000). The development of analytical cartography: A personal note. Cartography and Geographic Information Science, 27(3), 189-194.
  • Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., & Kmoch, A. (2020). Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 12(21), 3482.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering, Environmental Engineering, Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Batuhan Kılıç 0000-0002-0529-8569

Fatih Gülgen 0000-0002-8754-9017

Meltem Çelen 0000-0001-9487-497X

Salim Öncel 0000-0002-1945-2336

Halil Oruç 0000-0002-6386-0046

Sinem Vural This is me 0000-0001-8842-0226

Project Number -
Publication Date June 2, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Kılıç, B., Gülgen, F., Çelen, M., Öncel, S., et al. (2022). Morphometric Analysis of Saz-Çayırova Drainage Basin using Geographic Information Systems and Different Digital Elevation Models. International Journal of Environment and Geoinformatics, 9(2), 177-186. https://doi.org/10.30897/ijegeo.1079851