Araştırma Makalesi
BibTex RIS Kaynak Göster

MAKİNE ÖĞRENMETABANLI ÖĞRENCİ BAŞARI PERFORMANS TAHMİNİ WEB UYGULAMASI

Yıl 2024, Cilt: 6 Sayı: 2, 126 - 134, 14.07.2024
https://doi.org/10.47933/ijeir.1504555

Öz

Araştırmamızda çoklu doğrusal regresyonun kullanılması, öğrenci performans endeksi üzerinde daha büyük etkiye sahip olan faktörlerin belirlenmesi açısından kritik öneme sahiptir. Öğrenci performans endeksini tahmin etmek için çoklu doğrusal regresyon modellerini kullanan makine öğrenmesi çalışmaları, eğitim süreçlerini ve bireysel öğrenci yeteneğini arttırmayı amaçlamaktadır. Bu çalışmalar öğrenci performansını etkileyen çeşitli değişkenleri inceleyerek akademik başarıyı etkileyen faktörleri daha derinlemesine anlamaya çalışmaktadır. Literatürde bu tür modellerin yüksek düzeyde doğruluk elde ettiği ve öğrenci performansını güvenilir bir şekilde tahmin edebildiği gösterilmiştir. Çalışmamızda çoklu doğrusal regresyon modelini oluşturduk ve eğittik. Veri seti eğitim ve test setlerine bölündü ve model bu veri setleri kullanılarak değerlendirildi. Modelin performansı MAE, MSE, R2, RMSE ve Accuracy(ACC) gibi çeşitli ölçümler kullanılarak değerlendirildi. Elde edilen sonuçlar, modelin olağanüstü derecede iyi performans gösterdiğini ve kesin tahminler yapma yeteneğini gösterdiğini gösterdi. Özellikle belirleme katsayısının (R2) 0,99 ve ACC değerinin 0,994 olması, modelin verileri doğru bir şekilde açıklama konusundaki olağanüstü yeteneğini vurgulamaktadır. Araştırmamızın odak noktası, çoklu doğrusal regresyon modelini kullanarak farklı bağımsız faktörlerin öğrenci başarısı üzerindeki etkisini analiz ederek elde edilen bulguların kesinliğini ve güvenilirliğini değerlendirmektir. Ayrıca, Flask web modülünü kullanarak, yeni değişkenlerin girilmesine dayalı olarak öğrenci performansının tahmin edilmesini sağlayan bir web arayüzü oluşturduk.

Kaynakça

  • [1] El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019, July). A multiple linear regression-based approach to predict student performance. In International conference on advanced intelligent systems for sustainable development (pp. 9-23). Cham: Springer International Publishing.
  • [2] Dhilipan, J., Vijayalakshmi, N., Suriya, S., & Christopher, A. (2021, February). Prediction of students performance using machine learning. In IOP conference series: Materials science and engineering (Vol. 1055, No. 1, p. 012122). IOP Publishing.
  • [3] Chauhan, N., Shah, K., Karn, D., & Dalal, J. (2019, April). Prediction of student's performance using machine learning. In 2nd International Conference on Advances in Science & Technology (ICAST).
  • [4] S. Kour, R. Kumar and M. Gupta, "Analysis of student performance using Machine learning Algorithms," 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2021, pp. 1395-1403, doi: 10.1109/ICIRCA51532.2021.9544935.
  • [5] Abirami, T., & Vadivel, R. (2023). Student semester marks prediction using linear regression algorithms in machine learning. World Journal of Advanced Research and Reviews, 18(1), 469-475.
  • [6] Dataset: https://www.kaggle.com/datasets/nikhil7280/student-performance-multiple-linear-regression/data
  • [7] Asif, R., Hina, S., & Haque, S. I. (2017). Predicting student academic performance using data mining methods. Int. J. Comput. Sci. Netw. Secur, 17(5), 187-191.
  • [8] B. Sravani and M. M. Bala, "Prediction of Student Performance Using Linear Regression," 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 2020, pp. 1-5, doi: 10.1109/INCET49848.2020.9154067.
  • [9] Arsad, P. M., & Buniyamin, N. (2014, April). Neural Network and Linear Regression methods for prediction of students' academic achievement. In 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 916-921). IEEE.

MACHINE LEARNING BASED STUDENT ACHIEVEMENT PERFORMANCE PREDICTION WEB APPLICATION

Yıl 2024, Cilt: 6 Sayı: 2, 126 - 134, 14.07.2024
https://doi.org/10.47933/ijeir.1504555

Öz

The use of multiple linear regression in our research is critical for determining the factors that have a greater impact on student performance index. Machine learning studies that employ multiple linear regression models to forecast student performance index aim to increase educational processes and individual student ability. These studies search to gain a deeper understanding of the factors that impact academic success by examining various variables that affect student performance. In the literature has demonstrated that such models achieve high levels of accuracy and can reliably predict student performance. In our study, we constructed and trained a multiple linear regression model. The dataset was divided into training and test sets, and the model was assessed using these datasets. Performance of the model was evaluated using various metrics such as MAE, MSE, R2, RMSE, and Accuracy(ACC). The results obtained indicated that the model performed exceptionally well, indicating its ability to make precise predictions. Especially, the coefficient of determination (R2) was 0.99, and the ACC value was 0.994, underscoring the model's exceptional ability to accurately explain the data. The focus of our research is to assess the precision and dependability of the findings derived from analyzing the impact of different independent factors on student achievement, utilizing a multiple linear regression model. Moreover, we have created a web interface using the Flask web module that enables the prediction of student performance based on inputting new variables.

Kaynakça

  • [1] El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019, July). A multiple linear regression-based approach to predict student performance. In International conference on advanced intelligent systems for sustainable development (pp. 9-23). Cham: Springer International Publishing.
  • [2] Dhilipan, J., Vijayalakshmi, N., Suriya, S., & Christopher, A. (2021, February). Prediction of students performance using machine learning. In IOP conference series: Materials science and engineering (Vol. 1055, No. 1, p. 012122). IOP Publishing.
  • [3] Chauhan, N., Shah, K., Karn, D., & Dalal, J. (2019, April). Prediction of student's performance using machine learning. In 2nd International Conference on Advances in Science & Technology (ICAST).
  • [4] S. Kour, R. Kumar and M. Gupta, "Analysis of student performance using Machine learning Algorithms," 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2021, pp. 1395-1403, doi: 10.1109/ICIRCA51532.2021.9544935.
  • [5] Abirami, T., & Vadivel, R. (2023). Student semester marks prediction using linear regression algorithms in machine learning. World Journal of Advanced Research and Reviews, 18(1), 469-475.
  • [6] Dataset: https://www.kaggle.com/datasets/nikhil7280/student-performance-multiple-linear-regression/data
  • [7] Asif, R., Hina, S., & Haque, S. I. (2017). Predicting student academic performance using data mining methods. Int. J. Comput. Sci. Netw. Secur, 17(5), 187-191.
  • [8] B. Sravani and M. M. Bala, "Prediction of Student Performance Using Linear Regression," 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 2020, pp. 1-5, doi: 10.1109/INCET49848.2020.9154067.
  • [9] Arsad, P. M., & Buniyamin, N. (2014, April). Neural Network and Linear Regression methods for prediction of students' academic achievement. In 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 916-921). IEEE.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka (Diğer)
Bölüm Research Articles
Yazarlar

Osman Ceylan 0000-0002-6060-0134

Onur Sevli 0000-0002-8933-8395

Erken Görünüm Tarihi 10 Temmuz 2024
Yayımlanma Tarihi 14 Temmuz 2024
Gönderilme Tarihi 25 Haziran 2024
Kabul Tarihi 10 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Ceylan, O., & Sevli, O. (2024). MACHINE LEARNING BASED STUDENT ACHIEVEMENT PERFORMANCE PREDICTION WEB APPLICATION. International Journal of Engineering and Innovative Research, 6(2), 126-134. https://doi.org/10.47933/ijeir.1504555

Open Journal Systems (BOAI)

This work is licensed under a Creative Commons Attribution 4.0 International License
88x31.png