Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Products and Educational Perspectives of Middle School Students Trained at the STEM Artificial Intelligence Center

Yıl 2025, Cilt: 12 Sayı: 1, 1 - 22

Öz

This study aims to evaluate the products using product evaluation form resulting from activities conducted by 5th-grade middle school students trained at the STEM Artificial Intelligence Center and to determine the students' perspectives on this education. The research, which uses the case study method, a qualitative research design, was conducted with 5th-grade students. Product Evaluation Form and Student Opinion Form were used in the evaluation of the data. The data were analyzed using the descriptive analysis method. According to the research findings, the products created by the students at the end of a term of STEM activities were determined to be original, adequate, diverse, and made using the materials provided. It was observed that in the material creation process, students collaborated in groups to produce a product; during the scientific research process, students answered open-ended questions by discussing among themselves and produced solutions to given real-life problems; and in the process of integrating what they learned from different subjects, students gained new knowledge from this group work and left happily. Considering the advantages, it can be said that it is important to increase the number of students trained at the STEM artificial intelligence center and the frequency of these trainings.

Kaynakça

  • Ahmed, S., Wallace, K. M., & Blessing, L. T. (2003). Understanding the differences between how novice and experienced designers approach design tasks. Research in Engineering Design, 14(1), 1-11. https://doi.org/10.1007/s00163-002-0023-z
  • Akarsu, M., Akçay, N. O., & Elmas, R. (2020). STEM eğitimi yaklaşımının özellikleri ve değerlendirilmesi. Boğaziçi Üniversitesi Eğitim Dergisi, 37, 155-175.
  • Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 national survey of science and mathematics education. Horizon Research, Inc.(NJ1).
  • Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education, 32(3), 347-364. https://doi.org/10.1007/BF00138871
  • Bodner, G. & Elmas, R. (2020). The impact of inquiry-based, group-work approaches to instruction on both students and their peer leaders. European Journal of Science and Mathematics Education, 8(1),51-66.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112 (1), 3–11.
  • Brewer, D. B., & Clark, F. B. (2012). Engineering design thinking: A powerful framework for developing STEM literacy. In J. Krajcik & R. Byas (Eds.), Designing and implementing STEM education and programs (pp. 27-46).
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, T. J. Moore, & E. E. Peters-Burton (Eds.), STEM roadmap: A framework for integrated STEM education (pp. 23–37). New York, NY: Routledge.
  • Burkhardt, H., & Schoenfeld, A. H. (2003). Improving educational research: Toward a more useful, more influential, and better-funded enterprise. Educational Researcher, 32(9), 3-14. https://doi.org/10.3102/0013189X032009003
  • Byas, R., & Krajcik, F. (2000). Establishing effective experiential STEM education. National Academies Press.
  • Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30.
  • Bybee, R. W. (2013). A case for STEM education. Arlington, VA: NSTA Press.
  • Bybee, R. W. (2014). NGSS and the next generation of science teachers. Journal of Science Teacher Education, 25(2), 211-221. https://doi.org/10.1007/s10972-014-9381-4
  • Carberry, A,R. & McKenna, A, F (2014). Exploring student conceptions of modeling and modeling uses in engineering desing. Journal of Engineering Education, 103(1), 77-79.
  • Carnevale, A. P., Smith, N., & Melton, M. (2011). STEM: Science technology engineering mathematics. Georgetown University Center on Education and the Workforce.
  • Chen, C. W. J., & Lo, K. M. J. (2019). From Teacher-Designer to Student-Researcher: a Study of Attitude Change Regarding Creativity in STEAM Education by Using Makey Makey as a Platform for Human-Centred Design Instrument. Journal for STEM Education Research, 2(1), 75-91. https://doi.org/10.1007/s41979-018-0010-6
  • Cho, B., & Lee, J. (2013). The Effects of Creativity and Flow on Learning through the STEAM Education on Elementary School Contexts. Paper presented at the International Conference of Educational Technology, Sejong University, South Korea.
  • Choi, Y. ve Hong, S.H. (2013). The Development and application effects of steam program about 'world of small organisms' unit in elementary science. Elementary Science Education, 32(3), 361-377.
  • Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13. https://doi.org/10.3102/0013189X032001009
  • Cohen, L., & Waite-Stupiansky, S. (2019). STEM in Early Childhood Education: How Science, Technology, Engineering, and Mathematics Strengthen Learning. Routledge. https://doi.org/10.4324/9780429453755
  • Cunningham, C. M. (2009). Engineering is elementary. The Bridge, 30(3), 11-17. http://irhe.sciedupress.comInternational Research in Higher Education Vol. 5, No. 1; 2020
  • Cunningham, C. M., & Lachapelle, C. P. (2014). Designing engineering experiences to engage all students. Engineering in pre-college settings: Synthesizing research, policy, and practices, 117-142. https://doi.org/10.2307/j.ctt6wq7bh.10
  • Cunningham, J. F., French, B. S., & Layton, R. I. (2007). Engineering in K-12 education: Building a strong foundation. National Academies Press.
  • Czerniak, C. M., Weber, W. B., Sandmann, Jr., A. and Ahern, J. (1999). Literature review of science and mathematics integration. School Science and Mathematics, 99(8), 421–430. https://doi.org/10.1111/j.1949-8594.1999.tb17504.x
  • Çetin, İ. (2020). Ortaöğretim öğrencilerinin matematik umutsuzluğunu yordayan değişkenler: Matematik kaygısı, matematiğe yönelik motivasyonel inançlar, matematik başarısı (köşk ilçesi örneği) (Doktora Tezi). Aydın Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü.
  • Dabney, K. W., Miller, F. R., & Karnes, M. (2012). Afterschool STEM (science, technology, engineering, and mathematics) programs: A comprehensive review of the literature. Review of educational research, 82(1), 269-309.
  • Dasgupta, C. (2019). Improvable models as scaffolds for promoting productive disciplinary engagement in an engineering design activity. Journal of Engineering Education, 108(3), 394-417. https://doi.org/10.1002/jee.20282
  • De Vries, M. J. (2018). Handbook of technology education. Springer. https://doi.org/10.1007/978-3-319-44687-5 Doğan, H. (2020). Beşinci sınıf fen bilimleri dersi ünitelerinin bütünleşik STEM eğitimi yaklaşımı ile tasarlanması, uygulanması ve değerlendirilmesi.
  • Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. ASCD.
  • Dym, C. L., & Brown, D. C. (2012). Engineering design: representation and reasoning. Cambridge University Press. https://doi.org/10.1017/CBO9781139031813
  • Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120. https://doi.org/10.1002/j.2168-9830.2005.tb00832.x
  • Dym, C. L., Agogino, E., Eris, O., Frey, M. D., & Leifer, L. J. (2005). Engineering design thinking. Cambridge University Press.
  • Early Childhood, S. W. G. (2017). Early STEM matters: Providing high-quality STEM experiences for all young learners. Chicago (IL): UChicago STEM Education and Erikson Institute.
  • Elmas, R. (2020). Bağlamın anlamı ve nitelikleri ve öğrencilerin fen eğitiminde bağlam tercihleri. Türkiye Kimya Derneği Dergisi Kısım C: Kimya Eğitimi, 5(1), 53-70.
  • English, L. D. (2019). Learning while designing in a fourth-grade integrated STEM problem. International Journal of Technology and Design Education, 29(5), 1011-1032. https://doi.org/10.1007/s10798-018-9482-z
  • English, L. D. (2021). Advancing STEM education for the 21st century. International Journal of Science and Mathematics Education, 19(2), 285-298.
  • English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 14. https://doi.org/10.1186/s40594-015-0027-7
  • Eren, E. & Dökme, İ. (2022). Fen eğitiminde kullanılan STEM uygulamalarının değerlendirilmesi. Muğla Sıtkı Koçman Üniversitesi Eğitim Fakültesi, 9(2), 669-681. DOI: 10.21666/muefd.1080617
  • Eroğlu, S. ve Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin STEM temelli ders etkinlikleri hakkındaki görüşleri. Eğitimde Nitel Araştırmalar Dergisi, 4(3), 43-67.
  • Fan, S.-C., & Yu, K.-C. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27(1), 107-129. https://doi.org/10.1007/s10798-015-9328-x
  • Fan, S., ve Ritz, J. (2014). International views of STEM education. In PATT-28 Research into Technological and Engineering Literacy Core Connections (pp. 7-14). Orlando: International Technology and Engineering Educators Association.
  • Fortus, D.,Krajcikb, J., Dershimerb, R.C., Marxc, R.W. ve Naaman R. (2005). Design-based science and real-world problem-solving, International Journal of ScienceEducation, 27(7), 855–879.
  • Farrell, S., Pearson, G., & Shafer, M. (2012). The role of engineering design in K-12 STEM education. In J. Krajcik & R. Byas (Eds.), Designing and implementing STEM education and programs (pp. 105-122).
  • Gardner, Howard (2004). Zihin Çerçeveleri: Çoklu Zeka Kuramı. İstanbul: Optimist Yayınları.
  • Gardner, Howard (2013). Çoklu Zeka: Yeni Ufuklar. İstanbul: Optimist Yayınları.
  • Heinze, T., & Kuhlmann, S. (2008). Across institutional boundaries? Research collaboration in German public sector nanoscience. Research Policy, 37(5), 888-899. https://doi.org/10.1016/j.respol.2008.01.009
  • Hinde, E. T. (2005). Revisiting curriculum integration: A fresh look at an old idea. The Social Studies, 96(3), 105-111. https://doi.org/10.3200/TSSS.96.3.105-111
  • Honey, M., Pearson, G., & Schweingruber, H. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press.
  • Hu, Y., Du, X., Bryan-Kinns, N., & Guo, Y. (2019). Identifying divergent design thinking through the observable behavior of service design novices. International Journal of Technology and Design Education, 29(5), 1179-1191. https://doi.org/10.1007/s10798-018-9479-7
  • Huang, F. (2017). Graduate employment and higher education in Japan. In Higher education in East Asia (pp. 117-137). Springer, Singapore.
  • İzmir İl Milli Eğitim Müdürlüğü. (2018). STEM AKADEMİZMİR Okul Öncesi Çalışmaları Kitapçığı. İzmir: Milli Eğitim Müdürlüğü
  • Johansson-Sköldberg, U., Woodilla, J., & Çetinkaya, M. (2013). Design thinking: past, present and possible futures. Creativity and Innovation Management, 22(2), 121-146. https://doi.org/10.1111/caim.12023
  • Karakaya, F., Yantırı, H., Yılmaz, G. ve Yılmaz M. (2019). İlkokul öğrencilerinin STEM etkinlikleri hakkında görüşlerinin belirlenmesi: 4. sınıf örneği. Uluslararası Türk Eğitim Bilimleri Dergisi, 7 (13), 1-14.
  • Karataş, İ., & Güven, B. (2003). Problem çözme davranışlarının değerlendirilmesinde kullanılan yöntemler: Klinik mülakatın potansiyeli. Elementary Education Online, 2(2).
  • Karışan, D. ve Yurdakul, Y. (2017). The effects of microprocessors based science technology engineering ve mathematics (STEM) investigations on 6th grade students’ attitudes towards these subject areas. Adnan Menderes University Education Faculty Journal of Educational Sciences, 8(1), 37-52.
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z
  • Kelley, T., & Sung, E. (2017). Examining Elementary School Students' Transfer of Learning through Engineering Design Using Think-Aloud Protocol Analysis. Journal of Technology Education, 28(2), 83-108. https://doi.org/10.21061/jte.v28i2.a.5
  • Kelly, G. J., & Cunningham, C. M. (2019). Epistemic tools in engineering design for K-12 education. Science Education, 103(4), 1080-1111. https://doi.org/10.1002/sce.21513
  • Kennedy, T. J., & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258.
  • Kim, D.H., Ko, D.G., ve Han, M.J. (2014). The Effects of science lessons applying steam education program on the creativity and interest levels of elementary students. Journal of the Korean Association for Science Education, 34(1), 43-54.
  • Koehler, C., Binns, I. C., & Bloom, M. A. (2015). The emergence of STEM. In C. C. Johnson, E. E. PetersBurton, T. J. Moore, C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM Road Map: A framework for integrated STEM education (pp. 13–22). New York, NY: Routledge.
  • Kretzschmar, A. (2003). The economic effects of design. Danish national agency for enterprise and housing. In.
  • Lesseig, K., Holmlund Nelson, T., Slavit, D., & Siedel, R. (2016). Supporting middle school teachers’ implementation of STEM design challenges. School Science and Mathematics, 116(4), 177–188.
  • Li, Q., & Schoenfeld, A. H. (2019). Practices and impacts of policies for STEM education in China. International Journal of STEM Education, 6(1), 1-12. https://doi.org/10.1186/s40594-019-0196-1
  • Li, Y., Schoenfeld, A. H., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). Design and design thinking in STEM education. Springer. https://doi.org/10.1007/s41979-019-00020-z
  • Lou, S. J., Shih, R. C., Ray Diez, C., & Tseng, K. H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes: an exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21, 195-215.
  • Macdonald, A., & Williams, J. (2009). STEM education in the UK: The roles of policy and science parks in fostering innovation and entrepreneurship. Technology Analysis & Strategic Management, 21(6), 805-816. https://doi.org/10.1080/09537320903124055
  • MacIsaac, D. (2019). US government releases Charting a Course for Success: America’s Strategy for STEM Education, report guiding federal agencies that offer STEM funding opportunities. The Physics Teacher, 57(2), 126-126. https://doi.org/10.1119/1.5088484
  • Marginson, S., & Wende, M. C. V. D. (2007). Globalisation and higher education. OECD Education Working Papers, No. 8, OECD Publishing. http://dx.doi.org/10.1787/173831738240
  • McFadden, J., & Roehrig, G. (2019). Engineering design in the elementary science classroom: supporting student discourse during an engineering design challenge. International Journal of Technology and Design Education, 29(2), 231-262. https://doi.org/10.1007/s10798-018-9444-5
  • Mildenhall, P., Cowie, B., & Sherriff, B. (2019). A STEM extended learning project to raise awareness of social justice in a Year 3 primary classroom. International Journal of Science Education, 41(4), 471-489.
  • Millî Eğitim Bakanlığı, Talim ve Terbiye Kurulu Başkanlığı. (2018). İlkokul ve ortaokul matematik dersi öğretim programı. Ankara: MEB.
  • Milli Eğitim Bakanlığı. (2016). STEM Eğitim Raporu. Erişim tarihi: 28 Mart 2024, http://yegitek.meb.gov.tr/STEM_Egitimi_Raporu.pdf
  • Moore,T., Tank,K, Glancy, A., Kersten,J.,Smith,K., Stohlmann, M.(2014). A frameworkfor implementing engineering standards in k-12. Pre-College Engineering Education Research, 4(1), 1-College Eng
  • Morrison, J. (2006). Attributes of STEM education: The student, the school, the classroom. TIES (Teaching Institute for Excellence in STEM), 20(2), 7.
  • Mustafa, N., Ismail, Z., Tasir, Z., Said, M. and Haruzuan, M. N. (2016). A meta-analysis on effective strategies for integrated STEM education. Advanced Science Letters, 22(12), 4225-4228. https://doi.org/10.1166/asl.2016.8111
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • National Research, C. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. National Academies Press.
  • Oba, J., & Shibayama, S. (2009). Turning point of Japanese university governance and management: Hybridization of new and old. In Higher Education Forum (No. 6, pp. 27-45).
  • OECD. (2021). PISA 2021 Results: Creative problem solving: Students' skills in tackling real-life problems (Volume V). PISA, OECD Publishing.
  • Okulu, H. Z. (2019). STEM eğitimi kapsamında astronomi etkinliklerinin geliştirilmesi ve değerlendirilmesi.
  • Olson, S., & Riordan, D. G. (2012). Engage to excel: Producing one million additional college graduates with degrees in science, technology, engineering, and mathematics. Report to the President. Executive Office of the President.
  • Orona, C., Carter, V., & Kindall, H. (2017). Understanding standard units of measure. Teaching Children Mathematics, 23(8), 500-503. https://doi.org/10.5951/teacchilmath.23.8.0500
  • Partnership for 21st Century Skills (2013). Framework for 21st century learning.
  • Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important?. Review of Educational Research, 82(3), 330-348. https://doi.org/10.3102/0034654312457429
  • Riskowski, J. L., Todd, C. D., Wee, B., Dark, M. and Harbor, J. (2009). Exploring the effectiveness of aninterdisciplinary water resources engineering module in an eighth grade science course. International Journal ofEngineering Education, 25(1), 181–195.
  • Scott, C. L. (2020). The futures of learning 2: What kind of learning for the 21st century? UNESCO Education Research and Foresight, Paris. ERF Working Papers Series, No. 14.
  • Simon, H. A. (2019). The sciences of the artificial. MIT Press. https://doi.org/10.7551/mitpress/12107.001.0001
  • Smith, E., & Gorard, S. (2011). Is there a shortage of scientists? A re-analysis of supply for the UK. British Journal of Educational Studies, 59(2), 159-177. https://doi.org/10.1080/00071005.2011.578567
  • Soylu, Y., & Soylu, C. (2006). Matematik derslerinde başariya giden yolda problem çözmenin rolü. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 7(11), 97-111.
  • Strimel, G. J., Kim, E., Grubbs, M. E., & Huffman, T. J. (2019). A meta-synthesis of primary and secondary student design cognition research. International Journal of Technology and Design Education, 1-32.
  • Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 1-32. https://doi.org/10.1007/s10798-019-09505-9
  • Şahin, A., Ayar, M. C., & Adıgüzel, T. (2014). Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri, 14(1), 1-26.
  • Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., ... & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 2.
  • Uğraş, M. (2020). The effects of STEM activities on STEM attitudes, scientific creativity and motivation beliefs of the students and their views on STEM education. International Online Journal of Educational Sciences, 10(5), 165-182.
  • Uğraş, M. ve Genç, Z. (2018). Pre-School teacher candidates' views about STEM education. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 724-744.
  • Wagner, T. (2008). The global achievement gap: Why even our best schools don't teach our kids what they need to know. New York: Basic Books.
  • Wang, H. (2012). A new era of science education: Science teachers' perceptions and classroom practices of science, technology, engineering, and mathematics (STEM) integration. Unpublished doctoral dissertation, Minnesota University.
  • Wendell, K. B., Wright, C. G., & Paugh, P. (2017). Reflective decision-making in elementary students' engineering design. Journal of Engineering Education, 106(3), 356-397. https://doi.org/10.1007/s10648-019-09465-5
  • Windschitl, M. (2009, February). Cultivating 21st century skills in science learners: How systems of teacher preparation and professional development will have to evolve. Presentation given at the National Academies of Science Workshop on 21st Century Skills, Washington, DC (Vol. 15).
  • Wissema, J. G. (2009). Towards the third generation university: Managing the university in transition. Edward Elgar Publishing.
  • Wright, N., & Wrigley, C. (2019). Broadening design-led education horizons: Conceptual insights and future research directions. International Journal of Technology and Design Education, 29(1), 1-23. https://doi.org/10.1007/s10798-017-9429-9
  • Wrigley, C., & Straker, K. (2017). Design thinking pedagogy: The educational design ladder. Innovations in Education and Teaching International, 54(4), 374-385. https://doi.org/10.1080/14703297.2015.1108214
  • Yıldırım, A. & Şimşek, H., 2018. Sosyal Bilimlerde Nitel Araştırma Yöntemleri, Seçkin Yayıncılık, Ankara.
  • Yıldırım, N., & Akdeniz, M. (2017). Bağımsız STEM Eğitim Merkezlerinin Öğrenci Başarısına Etkisi Üzerine Bir Araştırma. Eğitim ve Bilim Dergisi, 42(162), 315-326.
Yıl 2025, Cilt: 12 Sayı: 1, 1 - 22

Öz

Kaynakça

  • Ahmed, S., Wallace, K. M., & Blessing, L. T. (2003). Understanding the differences between how novice and experienced designers approach design tasks. Research in Engineering Design, 14(1), 1-11. https://doi.org/10.1007/s00163-002-0023-z
  • Akarsu, M., Akçay, N. O., & Elmas, R. (2020). STEM eğitimi yaklaşımının özellikleri ve değerlendirilmesi. Boğaziçi Üniversitesi Eğitim Dergisi, 37, 155-175.
  • Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 national survey of science and mathematics education. Horizon Research, Inc.(NJ1).
  • Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education, 32(3), 347-364. https://doi.org/10.1007/BF00138871
  • Bodner, G. & Elmas, R. (2020). The impact of inquiry-based, group-work approaches to instruction on both students and their peer leaders. European Journal of Science and Mathematics Education, 8(1),51-66.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112 (1), 3–11.
  • Brewer, D. B., & Clark, F. B. (2012). Engineering design thinking: A powerful framework for developing STEM literacy. In J. Krajcik & R. Byas (Eds.), Designing and implementing STEM education and programs (pp. 27-46).
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, T. J. Moore, & E. E. Peters-Burton (Eds.), STEM roadmap: A framework for integrated STEM education (pp. 23–37). New York, NY: Routledge.
  • Burkhardt, H., & Schoenfeld, A. H. (2003). Improving educational research: Toward a more useful, more influential, and better-funded enterprise. Educational Researcher, 32(9), 3-14. https://doi.org/10.3102/0013189X032009003
  • Byas, R., & Krajcik, F. (2000). Establishing effective experiential STEM education. National Academies Press.
  • Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30.
  • Bybee, R. W. (2013). A case for STEM education. Arlington, VA: NSTA Press.
  • Bybee, R. W. (2014). NGSS and the next generation of science teachers. Journal of Science Teacher Education, 25(2), 211-221. https://doi.org/10.1007/s10972-014-9381-4
  • Carberry, A,R. & McKenna, A, F (2014). Exploring student conceptions of modeling and modeling uses in engineering desing. Journal of Engineering Education, 103(1), 77-79.
  • Carnevale, A. P., Smith, N., & Melton, M. (2011). STEM: Science technology engineering mathematics. Georgetown University Center on Education and the Workforce.
  • Chen, C. W. J., & Lo, K. M. J. (2019). From Teacher-Designer to Student-Researcher: a Study of Attitude Change Regarding Creativity in STEAM Education by Using Makey Makey as a Platform for Human-Centred Design Instrument. Journal for STEM Education Research, 2(1), 75-91. https://doi.org/10.1007/s41979-018-0010-6
  • Cho, B., & Lee, J. (2013). The Effects of Creativity and Flow on Learning through the STEAM Education on Elementary School Contexts. Paper presented at the International Conference of Educational Technology, Sejong University, South Korea.
  • Choi, Y. ve Hong, S.H. (2013). The Development and application effects of steam program about 'world of small organisms' unit in elementary science. Elementary Science Education, 32(3), 361-377.
  • Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13. https://doi.org/10.3102/0013189X032001009
  • Cohen, L., & Waite-Stupiansky, S. (2019). STEM in Early Childhood Education: How Science, Technology, Engineering, and Mathematics Strengthen Learning. Routledge. https://doi.org/10.4324/9780429453755
  • Cunningham, C. M. (2009). Engineering is elementary. The Bridge, 30(3), 11-17. http://irhe.sciedupress.comInternational Research in Higher Education Vol. 5, No. 1; 2020
  • Cunningham, C. M., & Lachapelle, C. P. (2014). Designing engineering experiences to engage all students. Engineering in pre-college settings: Synthesizing research, policy, and practices, 117-142. https://doi.org/10.2307/j.ctt6wq7bh.10
  • Cunningham, J. F., French, B. S., & Layton, R. I. (2007). Engineering in K-12 education: Building a strong foundation. National Academies Press.
  • Czerniak, C. M., Weber, W. B., Sandmann, Jr., A. and Ahern, J. (1999). Literature review of science and mathematics integration. School Science and Mathematics, 99(8), 421–430. https://doi.org/10.1111/j.1949-8594.1999.tb17504.x
  • Çetin, İ. (2020). Ortaöğretim öğrencilerinin matematik umutsuzluğunu yordayan değişkenler: Matematik kaygısı, matematiğe yönelik motivasyonel inançlar, matematik başarısı (köşk ilçesi örneği) (Doktora Tezi). Aydın Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü.
  • Dabney, K. W., Miller, F. R., & Karnes, M. (2012). Afterschool STEM (science, technology, engineering, and mathematics) programs: A comprehensive review of the literature. Review of educational research, 82(1), 269-309.
  • Dasgupta, C. (2019). Improvable models as scaffolds for promoting productive disciplinary engagement in an engineering design activity. Journal of Engineering Education, 108(3), 394-417. https://doi.org/10.1002/jee.20282
  • De Vries, M. J. (2018). Handbook of technology education. Springer. https://doi.org/10.1007/978-3-319-44687-5 Doğan, H. (2020). Beşinci sınıf fen bilimleri dersi ünitelerinin bütünleşik STEM eğitimi yaklaşımı ile tasarlanması, uygulanması ve değerlendirilmesi.
  • Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. ASCD.
  • Dym, C. L., & Brown, D. C. (2012). Engineering design: representation and reasoning. Cambridge University Press. https://doi.org/10.1017/CBO9781139031813
  • Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120. https://doi.org/10.1002/j.2168-9830.2005.tb00832.x
  • Dym, C. L., Agogino, E., Eris, O., Frey, M. D., & Leifer, L. J. (2005). Engineering design thinking. Cambridge University Press.
  • Early Childhood, S. W. G. (2017). Early STEM matters: Providing high-quality STEM experiences for all young learners. Chicago (IL): UChicago STEM Education and Erikson Institute.
  • Elmas, R. (2020). Bağlamın anlamı ve nitelikleri ve öğrencilerin fen eğitiminde bağlam tercihleri. Türkiye Kimya Derneği Dergisi Kısım C: Kimya Eğitimi, 5(1), 53-70.
  • English, L. D. (2019). Learning while designing in a fourth-grade integrated STEM problem. International Journal of Technology and Design Education, 29(5), 1011-1032. https://doi.org/10.1007/s10798-018-9482-z
  • English, L. D. (2021). Advancing STEM education for the 21st century. International Journal of Science and Mathematics Education, 19(2), 285-298.
  • English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 14. https://doi.org/10.1186/s40594-015-0027-7
  • Eren, E. & Dökme, İ. (2022). Fen eğitiminde kullanılan STEM uygulamalarının değerlendirilmesi. Muğla Sıtkı Koçman Üniversitesi Eğitim Fakültesi, 9(2), 669-681. DOI: 10.21666/muefd.1080617
  • Eroğlu, S. ve Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin STEM temelli ders etkinlikleri hakkındaki görüşleri. Eğitimde Nitel Araştırmalar Dergisi, 4(3), 43-67.
  • Fan, S.-C., & Yu, K.-C. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27(1), 107-129. https://doi.org/10.1007/s10798-015-9328-x
  • Fan, S., ve Ritz, J. (2014). International views of STEM education. In PATT-28 Research into Technological and Engineering Literacy Core Connections (pp. 7-14). Orlando: International Technology and Engineering Educators Association.
  • Fortus, D.,Krajcikb, J., Dershimerb, R.C., Marxc, R.W. ve Naaman R. (2005). Design-based science and real-world problem-solving, International Journal of ScienceEducation, 27(7), 855–879.
  • Farrell, S., Pearson, G., & Shafer, M. (2012). The role of engineering design in K-12 STEM education. In J. Krajcik & R. Byas (Eds.), Designing and implementing STEM education and programs (pp. 105-122).
  • Gardner, Howard (2004). Zihin Çerçeveleri: Çoklu Zeka Kuramı. İstanbul: Optimist Yayınları.
  • Gardner, Howard (2013). Çoklu Zeka: Yeni Ufuklar. İstanbul: Optimist Yayınları.
  • Heinze, T., & Kuhlmann, S. (2008). Across institutional boundaries? Research collaboration in German public sector nanoscience. Research Policy, 37(5), 888-899. https://doi.org/10.1016/j.respol.2008.01.009
  • Hinde, E. T. (2005). Revisiting curriculum integration: A fresh look at an old idea. The Social Studies, 96(3), 105-111. https://doi.org/10.3200/TSSS.96.3.105-111
  • Honey, M., Pearson, G., & Schweingruber, H. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press.
  • Hu, Y., Du, X., Bryan-Kinns, N., & Guo, Y. (2019). Identifying divergent design thinking through the observable behavior of service design novices. International Journal of Technology and Design Education, 29(5), 1179-1191. https://doi.org/10.1007/s10798-018-9479-7
  • Huang, F. (2017). Graduate employment and higher education in Japan. In Higher education in East Asia (pp. 117-137). Springer, Singapore.
  • İzmir İl Milli Eğitim Müdürlüğü. (2018). STEM AKADEMİZMİR Okul Öncesi Çalışmaları Kitapçığı. İzmir: Milli Eğitim Müdürlüğü
  • Johansson-Sköldberg, U., Woodilla, J., & Çetinkaya, M. (2013). Design thinking: past, present and possible futures. Creativity and Innovation Management, 22(2), 121-146. https://doi.org/10.1111/caim.12023
  • Karakaya, F., Yantırı, H., Yılmaz, G. ve Yılmaz M. (2019). İlkokul öğrencilerinin STEM etkinlikleri hakkında görüşlerinin belirlenmesi: 4. sınıf örneği. Uluslararası Türk Eğitim Bilimleri Dergisi, 7 (13), 1-14.
  • Karataş, İ., & Güven, B. (2003). Problem çözme davranışlarının değerlendirilmesinde kullanılan yöntemler: Klinik mülakatın potansiyeli. Elementary Education Online, 2(2).
  • Karışan, D. ve Yurdakul, Y. (2017). The effects of microprocessors based science technology engineering ve mathematics (STEM) investigations on 6th grade students’ attitudes towards these subject areas. Adnan Menderes University Education Faculty Journal of Educational Sciences, 8(1), 37-52.
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z
  • Kelley, T., & Sung, E. (2017). Examining Elementary School Students' Transfer of Learning through Engineering Design Using Think-Aloud Protocol Analysis. Journal of Technology Education, 28(2), 83-108. https://doi.org/10.21061/jte.v28i2.a.5
  • Kelly, G. J., & Cunningham, C. M. (2019). Epistemic tools in engineering design for K-12 education. Science Education, 103(4), 1080-1111. https://doi.org/10.1002/sce.21513
  • Kennedy, T. J., & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258.
  • Kim, D.H., Ko, D.G., ve Han, M.J. (2014). The Effects of science lessons applying steam education program on the creativity and interest levels of elementary students. Journal of the Korean Association for Science Education, 34(1), 43-54.
  • Koehler, C., Binns, I. C., & Bloom, M. A. (2015). The emergence of STEM. In C. C. Johnson, E. E. PetersBurton, T. J. Moore, C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM Road Map: A framework for integrated STEM education (pp. 13–22). New York, NY: Routledge.
  • Kretzschmar, A. (2003). The economic effects of design. Danish national agency for enterprise and housing. In.
  • Lesseig, K., Holmlund Nelson, T., Slavit, D., & Siedel, R. (2016). Supporting middle school teachers’ implementation of STEM design challenges. School Science and Mathematics, 116(4), 177–188.
  • Li, Q., & Schoenfeld, A. H. (2019). Practices and impacts of policies for STEM education in China. International Journal of STEM Education, 6(1), 1-12. https://doi.org/10.1186/s40594-019-0196-1
  • Li, Y., Schoenfeld, A. H., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). Design and design thinking in STEM education. Springer. https://doi.org/10.1007/s41979-019-00020-z
  • Lou, S. J., Shih, R. C., Ray Diez, C., & Tseng, K. H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes: an exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21, 195-215.
  • Macdonald, A., & Williams, J. (2009). STEM education in the UK: The roles of policy and science parks in fostering innovation and entrepreneurship. Technology Analysis & Strategic Management, 21(6), 805-816. https://doi.org/10.1080/09537320903124055
  • MacIsaac, D. (2019). US government releases Charting a Course for Success: America’s Strategy for STEM Education, report guiding federal agencies that offer STEM funding opportunities. The Physics Teacher, 57(2), 126-126. https://doi.org/10.1119/1.5088484
  • Marginson, S., & Wende, M. C. V. D. (2007). Globalisation and higher education. OECD Education Working Papers, No. 8, OECD Publishing. http://dx.doi.org/10.1787/173831738240
  • McFadden, J., & Roehrig, G. (2019). Engineering design in the elementary science classroom: supporting student discourse during an engineering design challenge. International Journal of Technology and Design Education, 29(2), 231-262. https://doi.org/10.1007/s10798-018-9444-5
  • Mildenhall, P., Cowie, B., & Sherriff, B. (2019). A STEM extended learning project to raise awareness of social justice in a Year 3 primary classroom. International Journal of Science Education, 41(4), 471-489.
  • Millî Eğitim Bakanlığı, Talim ve Terbiye Kurulu Başkanlığı. (2018). İlkokul ve ortaokul matematik dersi öğretim programı. Ankara: MEB.
  • Milli Eğitim Bakanlığı. (2016). STEM Eğitim Raporu. Erişim tarihi: 28 Mart 2024, http://yegitek.meb.gov.tr/STEM_Egitimi_Raporu.pdf
  • Moore,T., Tank,K, Glancy, A., Kersten,J.,Smith,K., Stohlmann, M.(2014). A frameworkfor implementing engineering standards in k-12. Pre-College Engineering Education Research, 4(1), 1-College Eng
  • Morrison, J. (2006). Attributes of STEM education: The student, the school, the classroom. TIES (Teaching Institute for Excellence in STEM), 20(2), 7.
  • Mustafa, N., Ismail, Z., Tasir, Z., Said, M. and Haruzuan, M. N. (2016). A meta-analysis on effective strategies for integrated STEM education. Advanced Science Letters, 22(12), 4225-4228. https://doi.org/10.1166/asl.2016.8111
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • National Research, C. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. National Academies Press.
  • Oba, J., & Shibayama, S. (2009). Turning point of Japanese university governance and management: Hybridization of new and old. In Higher Education Forum (No. 6, pp. 27-45).
  • OECD. (2021). PISA 2021 Results: Creative problem solving: Students' skills in tackling real-life problems (Volume V). PISA, OECD Publishing.
  • Okulu, H. Z. (2019). STEM eğitimi kapsamında astronomi etkinliklerinin geliştirilmesi ve değerlendirilmesi.
  • Olson, S., & Riordan, D. G. (2012). Engage to excel: Producing one million additional college graduates with degrees in science, technology, engineering, and mathematics. Report to the President. Executive Office of the President.
  • Orona, C., Carter, V., & Kindall, H. (2017). Understanding standard units of measure. Teaching Children Mathematics, 23(8), 500-503. https://doi.org/10.5951/teacchilmath.23.8.0500
  • Partnership for 21st Century Skills (2013). Framework for 21st century learning.
  • Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important?. Review of Educational Research, 82(3), 330-348. https://doi.org/10.3102/0034654312457429
  • Riskowski, J. L., Todd, C. D., Wee, B., Dark, M. and Harbor, J. (2009). Exploring the effectiveness of aninterdisciplinary water resources engineering module in an eighth grade science course. International Journal ofEngineering Education, 25(1), 181–195.
  • Scott, C. L. (2020). The futures of learning 2: What kind of learning for the 21st century? UNESCO Education Research and Foresight, Paris. ERF Working Papers Series, No. 14.
  • Simon, H. A. (2019). The sciences of the artificial. MIT Press. https://doi.org/10.7551/mitpress/12107.001.0001
  • Smith, E., & Gorard, S. (2011). Is there a shortage of scientists? A re-analysis of supply for the UK. British Journal of Educational Studies, 59(2), 159-177. https://doi.org/10.1080/00071005.2011.578567
  • Soylu, Y., & Soylu, C. (2006). Matematik derslerinde başariya giden yolda problem çözmenin rolü. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 7(11), 97-111.
  • Strimel, G. J., Kim, E., Grubbs, M. E., & Huffman, T. J. (2019). A meta-synthesis of primary and secondary student design cognition research. International Journal of Technology and Design Education, 1-32.
  • Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 1-32. https://doi.org/10.1007/s10798-019-09505-9
  • Şahin, A., Ayar, M. C., & Adıgüzel, T. (2014). Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri, 14(1), 1-26.
  • Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., ... & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 2.
  • Uğraş, M. (2020). The effects of STEM activities on STEM attitudes, scientific creativity and motivation beliefs of the students and their views on STEM education. International Online Journal of Educational Sciences, 10(5), 165-182.
  • Uğraş, M. ve Genç, Z. (2018). Pre-School teacher candidates' views about STEM education. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 724-744.
  • Wagner, T. (2008). The global achievement gap: Why even our best schools don't teach our kids what they need to know. New York: Basic Books.
  • Wang, H. (2012). A new era of science education: Science teachers' perceptions and classroom practices of science, technology, engineering, and mathematics (STEM) integration. Unpublished doctoral dissertation, Minnesota University.
  • Wendell, K. B., Wright, C. G., & Paugh, P. (2017). Reflective decision-making in elementary students' engineering design. Journal of Engineering Education, 106(3), 356-397. https://doi.org/10.1007/s10648-019-09465-5
  • Windschitl, M. (2009, February). Cultivating 21st century skills in science learners: How systems of teacher preparation and professional development will have to evolve. Presentation given at the National Academies of Science Workshop on 21st Century Skills, Washington, DC (Vol. 15).
  • Wissema, J. G. (2009). Towards the third generation university: Managing the university in transition. Edward Elgar Publishing.
  • Wright, N., & Wrigley, C. (2019). Broadening design-led education horizons: Conceptual insights and future research directions. International Journal of Technology and Design Education, 29(1), 1-23. https://doi.org/10.1007/s10798-017-9429-9
  • Wrigley, C., & Straker, K. (2017). Design thinking pedagogy: The educational design ladder. Innovations in Education and Teaching International, 54(4), 374-385. https://doi.org/10.1080/14703297.2015.1108214
  • Yıldırım, A. & Şimşek, H., 2018. Sosyal Bilimlerde Nitel Araştırma Yöntemleri, Seçkin Yayıncılık, Ankara.
  • Yıldırım, N., & Akdeniz, M. (2017). Bağımsız STEM Eğitim Merkezlerinin Öğrenci Başarısına Etkisi Üzerine Bir Araştırma. Eğitim ve Bilim Dergisi, 42(162), 315-326.
Toplam 105 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular STEM Eğitimi
Bölüm Araştırma Makalesi
Yazarlar

Nejla Gürefe 0000-0002-0705-0890

Elif Yaren Taş 0000-0001-9842-0481

Erken Görünüm Tarihi 11 Nisan 2025
Yayımlanma Tarihi
Gönderilme Tarihi 21 Eylül 2024
Kabul Tarihi 19 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 1

Kaynak Göster

APA Gürefe, N., & Taş, E. Y. (2025). Evaluation of Products and Educational Perspectives of Middle School Students Trained at the STEM Artificial Intelligence Center. International Journal of Educational Studies in Mathematics, 12(1), 1-22.