Araştırma Makalesi
BibTex RIS Kaynak Göster

Thermal and Mechanical Properties of Concretes with Porous Aggregates

Yıl 2021, Cilt: 5 Sayı: 2, 145 - 151, 31.12.2021
https://doi.org/10.46460/ijiea.905526

Öz

The results of an experimental study on the thermal and mechanical properties of concretes using porous aggregates instead of conventional aggregates are presented in this study. Oriented at this purpose, eleven concrete samples containing organic sediment stones, volcanic stones and artificial porous aggregates were prepared as porous aggregates. The concrete samples were subjected to certain tests at the end of 28 days of drying period and their thermal and mechanical properties were determined accordingly. With this study, the following values were obtained: i) The lowest heat transfer coefficient for concrete with expanded polystyrene aggregates from the group of artificial porous aggregates: 0.175 W/mK, ii) The highest compressive strength value is basalt-type stone (Karaca dag) from the group of volcanic stones: 117 MPa.

Kaynakça

  • Referans1 Bicer A., 2020. Make use of volcanic slag as aggregateitheproduction of concrete, International Journal of Eastern Anatolia Science Engineering and Design, 2(2), 337-347.
  • Referans2 Bicer A., 2019-a. Ahlat ve Malazgirt yapı taşlarının bazı fiziksel özellikleri, Fırat Üniversitesi Müh. Bil. Dergisi, 31(2), 301-307.
  • Referans3 Bicer A. 2019-b. Some physical properties of the building stones from Southeastern Anatolia Region, Bartın University International Journal of Natural and Applied Sciences, 2(1), 9-15.
  • Referans4 Bicer A., 2019-c. Some physical properties of the building stones from Elazıg-Nevsehir region, Nevşehir Bilim ve Teknoloji Dergisi, 8(2), 96-102
  • Referans5 Gevrek A.İ., Kazancı N., 1991. İgnimbrit: oluşumu ve özellikleri, Jeoloji Mühendisliği Dergisi, Ankara, 38, 39-42
  • Referans6 Kazancı N., Gürbüz A., 2014. Jeolojik Miras Nitelikli Türkiye Doğal Taşları, Türkiye Jeoloji Bülteni, 57: 1.
  • Referans7 Pivko D., 2003. Natural stones in earth’s history. Acta Geologica, 58, 73-86.
  • Referans8 Akıllı H., 1987. Taş eserlerin tahribatına neden olan etkenler, Rölöve ve Restorasyon Dergisi, 6, 129-135.
  • Referans9 Gürdal E., 1982. Anıtlarda ve yapılarda kullanılmış doğal taşların bozulmaları ve korunmaları, Rölöve ve Restorasyon Dergisi, 27-33.
  • Referans10 Akın M., Özvan A., Dinçer İ., Oyan V., Tapan M.. 2014. Ahlat Taşı’nın atmosferik etkiler altındaki duyarlılığı, III. Uluslararası Ahlat-Avrasya Bilim, Kültür ve Sanat Sempozyumu Bildiriler Kitabı (Editörler Doğru M. ve Aksoy E.), 60-69, 22-24 Eylül Ahlat- Bitlis.
  • Referans11 Bicer A., Celik N., 2020. Influence of pine tree resin on thermo-mechanical properties of pumice-cement composites, Cement and Concrete Composites, 112: September, 103668.
  • Referans12 Akpinar E.K., Kocyiğit F., 2016. Thermal and mechanical properties of lightweight concretes produced with pumice and tragacanth, Journal of Adhesion Science and Technology, 30(5): 534-553
  • Referans13 Kaya A., Kar F., 2016. Properties of concrete containing waste expanded polystyrene and natural resin, Construction and Building Materials, 105: 572-578.
  • Referans14 Xu Y, Jiang L, Xu J., Li Y., 2012. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Construction and Building Materials 27, 32-38.
  • Referans15 Gnip I.., Vejelis S.,, Vaitkus S., 2012. Thermal conductivity of expanded polystyrene (EPS) at 10oC and its conversion to temperatures within interval from 0 to 50 oC, Energy and Buildings, 52, 107-111.
  • Referans16 Demirboga R., Kan A.K, 2012. Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes, Construction and Building Materials, 35, 730–734.
  • Referans17 Devecioglu A.G, Bicer Y., 2016. The effects of tragacanth addition on the thermal and mechanical properties of light weight concretes mixed with expanded clay, Period. Polytech. Civil Eng., 60(1): 45-50.
  • Referans18 Bouvard D., Chaix J.M, Dendievel R., Fazekas A., Létang J.M., Peix G., Quenard D., 2007. Characterization and simulation of microstructure and properties of EC lightweight concrete, Cement and Concrete Research, 37, 1666 -1673
  • Referans19 Chen B., Liu J., 2004. Properties of lightweight expanded clay concrete reinforced with steel fiber, Cement and Concrete Research, 34, 1259 —1263.
  • Referans20 Bartolini, R., Filippozzi, S., Princi, E., Schenone, C., Vinici, S., 201.. Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin, Applied Clay Science, 48, 460-465.
  • Referans21 Rossignolo, J.A., Marcos, V.C., Jerusa. A., 2003. Properties of high performance LWAC for precast structures with Brazilian lightweight aggregates, Cement and Concrete Composites. 25, 77-82.
  • Referans22 Vasina, M., Hughes D.C., Horoshenkov K.V., Lapcik J., 2006. The acoustical properties of consolidated expanded clay granulates, Applied Acoustics, 67, 787-796.
  • Referans23 Uluer O., Karaağaç I., Aktaş M., Durmuş G., Ağbulut U, Khanlari A.,, Çelik D.N., 2018. An investigation of usability of expanded perlite in insulation technologies, Pamukkale University Journal of Engineering Sciences, 24(1), 36-42
  • Referans24 Topcu I.B., Isıkdag B., 2008. Effect of expanded perlite aggregate on the properties of lightweight concrete”, journal of materials processing technology 2 0 4, 34–38.
  • Referans25 Denko S., 1990. Shotherm Operation Manual No: 125-2.K.K, Instrument Products Department, 13-9 Shiba Daimon, Tokyo 105, Japan.
  • Referans26 ASTM C 109-80, 1983. Standards ASTM Designation, Standard test method for compressive strength of hydraulic cement mortars.
  • Referans27 TS 699/T1, 2016. The test and experiment methods of natural building stones, TSE, Ankara.
  • Referans28 BS 812-109 Standards, 1990. , Testing aggregates-part 109: methods for determination of moisture content. British Standards Institution

Gözenekli Agregalı Betonların Isıl ve Mekanik Özellikleri

Yıl 2021, Cilt: 5 Sayı: 2, 145 - 151, 31.12.2021
https://doi.org/10.46460/ijiea.905526

Öz

Bu çalışmada, geleneksel agrega yerine gözenekli agrega kullanılan betonların ısıl ve mekanik özellikleri üzerine yapılan deneysel bir çalışmanın sonuçlan sunulmuştur. Bu amaçla gözenekli agrega olarak organik sediment taşlar, volkanik taşlar ve yapay gözenekli agregalar ihtiva eden on bir adet beton numuneler hazırlanmıştır. Beton numuneler, 28 günlük kuruma sureci sonunda bazı testlere tabi tutularak ısıl ve mekanik özellikleri belirlenmiştir. Bu çalışma ile i) en düşük ısı iletim katsayısı, yapay gözenekli agregalar gurubundan genleşmiş polistiren agregalı beton 0.175 W/mK olarak, ii) en yüksek basma gerilmesi değeri volkanik taşlar gurubundan basalt-type stone (Karaca dag) 117 MPa olarak belirlenmiştir

Kaynakça

  • Referans1 Bicer A., 2020. Make use of volcanic slag as aggregateitheproduction of concrete, International Journal of Eastern Anatolia Science Engineering and Design, 2(2), 337-347.
  • Referans2 Bicer A., 2019-a. Ahlat ve Malazgirt yapı taşlarının bazı fiziksel özellikleri, Fırat Üniversitesi Müh. Bil. Dergisi, 31(2), 301-307.
  • Referans3 Bicer A. 2019-b. Some physical properties of the building stones from Southeastern Anatolia Region, Bartın University International Journal of Natural and Applied Sciences, 2(1), 9-15.
  • Referans4 Bicer A., 2019-c. Some physical properties of the building stones from Elazıg-Nevsehir region, Nevşehir Bilim ve Teknoloji Dergisi, 8(2), 96-102
  • Referans5 Gevrek A.İ., Kazancı N., 1991. İgnimbrit: oluşumu ve özellikleri, Jeoloji Mühendisliği Dergisi, Ankara, 38, 39-42
  • Referans6 Kazancı N., Gürbüz A., 2014. Jeolojik Miras Nitelikli Türkiye Doğal Taşları, Türkiye Jeoloji Bülteni, 57: 1.
  • Referans7 Pivko D., 2003. Natural stones in earth’s history. Acta Geologica, 58, 73-86.
  • Referans8 Akıllı H., 1987. Taş eserlerin tahribatına neden olan etkenler, Rölöve ve Restorasyon Dergisi, 6, 129-135.
  • Referans9 Gürdal E., 1982. Anıtlarda ve yapılarda kullanılmış doğal taşların bozulmaları ve korunmaları, Rölöve ve Restorasyon Dergisi, 27-33.
  • Referans10 Akın M., Özvan A., Dinçer İ., Oyan V., Tapan M.. 2014. Ahlat Taşı’nın atmosferik etkiler altındaki duyarlılığı, III. Uluslararası Ahlat-Avrasya Bilim, Kültür ve Sanat Sempozyumu Bildiriler Kitabı (Editörler Doğru M. ve Aksoy E.), 60-69, 22-24 Eylül Ahlat- Bitlis.
  • Referans11 Bicer A., Celik N., 2020. Influence of pine tree resin on thermo-mechanical properties of pumice-cement composites, Cement and Concrete Composites, 112: September, 103668.
  • Referans12 Akpinar E.K., Kocyiğit F., 2016. Thermal and mechanical properties of lightweight concretes produced with pumice and tragacanth, Journal of Adhesion Science and Technology, 30(5): 534-553
  • Referans13 Kaya A., Kar F., 2016. Properties of concrete containing waste expanded polystyrene and natural resin, Construction and Building Materials, 105: 572-578.
  • Referans14 Xu Y, Jiang L, Xu J., Li Y., 2012. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Construction and Building Materials 27, 32-38.
  • Referans15 Gnip I.., Vejelis S.,, Vaitkus S., 2012. Thermal conductivity of expanded polystyrene (EPS) at 10oC and its conversion to temperatures within interval from 0 to 50 oC, Energy and Buildings, 52, 107-111.
  • Referans16 Demirboga R., Kan A.K, 2012. Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes, Construction and Building Materials, 35, 730–734.
  • Referans17 Devecioglu A.G, Bicer Y., 2016. The effects of tragacanth addition on the thermal and mechanical properties of light weight concretes mixed with expanded clay, Period. Polytech. Civil Eng., 60(1): 45-50.
  • Referans18 Bouvard D., Chaix J.M, Dendievel R., Fazekas A., Létang J.M., Peix G., Quenard D., 2007. Characterization and simulation of microstructure and properties of EC lightweight concrete, Cement and Concrete Research, 37, 1666 -1673
  • Referans19 Chen B., Liu J., 2004. Properties of lightweight expanded clay concrete reinforced with steel fiber, Cement and Concrete Research, 34, 1259 —1263.
  • Referans20 Bartolini, R., Filippozzi, S., Princi, E., Schenone, C., Vinici, S., 201.. Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin, Applied Clay Science, 48, 460-465.
  • Referans21 Rossignolo, J.A., Marcos, V.C., Jerusa. A., 2003. Properties of high performance LWAC for precast structures with Brazilian lightweight aggregates, Cement and Concrete Composites. 25, 77-82.
  • Referans22 Vasina, M., Hughes D.C., Horoshenkov K.V., Lapcik J., 2006. The acoustical properties of consolidated expanded clay granulates, Applied Acoustics, 67, 787-796.
  • Referans23 Uluer O., Karaağaç I., Aktaş M., Durmuş G., Ağbulut U, Khanlari A.,, Çelik D.N., 2018. An investigation of usability of expanded perlite in insulation technologies, Pamukkale University Journal of Engineering Sciences, 24(1), 36-42
  • Referans24 Topcu I.B., Isıkdag B., 2008. Effect of expanded perlite aggregate on the properties of lightweight concrete”, journal of materials processing technology 2 0 4, 34–38.
  • Referans25 Denko S., 1990. Shotherm Operation Manual No: 125-2.K.K, Instrument Products Department, 13-9 Shiba Daimon, Tokyo 105, Japan.
  • Referans26 ASTM C 109-80, 1983. Standards ASTM Designation, Standard test method for compressive strength of hydraulic cement mortars.
  • Referans27 TS 699/T1, 2016. The test and experiment methods of natural building stones, TSE, Ankara.
  • Referans28 BS 812-109 Standards, 1990. , Testing aggregates-part 109: methods for determination of moisture content. British Standards Institution
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşe Biçer 0000-0003-4514-5644

Erken Görünüm Tarihi 30 Aralık 2021
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 29 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Biçer, A. (2021). Thermal and Mechanical Properties of Concretes with Porous Aggregates. International Journal of Innovative Engineering Applications, 5(2), 145-151. https://doi.org/10.46460/ijiea.905526
AMA Biçer A. Thermal and Mechanical Properties of Concretes with Porous Aggregates. ijiea, IJIEA. Aralık 2021;5(2):145-151. doi:10.46460/ijiea.905526
Chicago Biçer, Ayşe. “Thermal and Mechanical Properties of Concretes With Porous Aggregates”. International Journal of Innovative Engineering Applications 5, sy. 2 (Aralık 2021): 145-51. https://doi.org/10.46460/ijiea.905526.
EndNote Biçer A (01 Aralık 2021) Thermal and Mechanical Properties of Concretes with Porous Aggregates. International Journal of Innovative Engineering Applications 5 2 145–151.
IEEE A. Biçer, “Thermal and Mechanical Properties of Concretes with Porous Aggregates”, ijiea, IJIEA, c. 5, sy. 2, ss. 145–151, 2021, doi: 10.46460/ijiea.905526.
ISNAD Biçer, Ayşe. “Thermal and Mechanical Properties of Concretes With Porous Aggregates”. International Journal of Innovative Engineering Applications 5/2 (Aralık 2021), 145-151. https://doi.org/10.46460/ijiea.905526.
JAMA Biçer A. Thermal and Mechanical Properties of Concretes with Porous Aggregates. ijiea, IJIEA. 2021;5:145–151.
MLA Biçer, Ayşe. “Thermal and Mechanical Properties of Concretes With Porous Aggregates”. International Journal of Innovative Engineering Applications, c. 5, sy. 2, 2021, ss. 145-51, doi:10.46460/ijiea.905526.
Vancouver Biçer A. Thermal and Mechanical Properties of Concretes with Porous Aggregates. ijiea, IJIEA. 2021;5(2):145-51.