Araştırma Makalesi
BibTex RIS Kaynak Göster

Kemik Külü ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi

Yıl 2022, Cilt: 6 Sayı: 1, 118 - 128, 28.06.2022
https://doi.org/10.46460/ijiea.1065103

Öz

Bu çalışmada, polipropilen (PP)/poliamid 6 (PA6) karışımlarında kullanılan kemik külü ve uyumlaştırıcı olarak maleik anhidrit aşılı polipropilen (MAPP) katkısının kompozitlerin mekanik ve ayrıca tribolojik özellikleri üzerindeki etkileri araştırılmıştır. Kemik tozu özellikle gıda sektöründe atık bir malzeme olarak karşımıza çıkmaktadır. Polimer matrisli kompozitlerde değerlendirilmesi petrol bazlı içeriğin azaltılması ve biyo-bozunur malzeme avantajı sunmasından dolayı önem arz etmektedir. Kompozitler ergiyik harmanlama yöntemi ile bir çift vidalı ekstrüder kullanılarak üretilmiş ve ardından enjeksiyon kalıplama ile mekanik ve tribolojik testlerde kullanılacak numune ölçülerine kalıplanmışlardır. Kompozitlere çekme testi, üç-nokta eğme testi, Shore D sertlik testi ve ball-on-disk kayma aşınma testleri uygulanmış ve sonuçlar kompozit bileşimine göre karşılaştırılmıştır. Sonuçlar incelendiğinde, kemik külü katkısının sertlik üzerinde, uyumlaştırıcı katkısının ise çekme ve eğme mukavemeti üzerinde daha etkili olduğu bulunmuştur. %20 ve %30 kemik külü katkısında en yüksek mekanik özelliklere ulaşılmıştır. Kemik külünün sürtünme katsayılarını düşürmede de çok etkili olduğu, özellikle uyumlaştırıcı ile birlikte kullanıldığında aşınma direncini önemli miktarda (%98’e kadar) azalttığı bulunmuştur. Özetle, kemik külü ve MAPP sinerjik etkisi ile elde edilen PP/PA6 matrisli kompozitler mekanik ve aşınma direnci gerektiren uygulamalar için ümit vadetmektedir.

Kaynakça

  • Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Ismadi, Damayanti, R., Subiyanto, B., Fatriasari, W., & Fudholi, A. (2021). A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. Journal of Materials Research and Technology, 13, 2442-2458.
  • Pickering, K. L., Aruan Efendy, M. G., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A – Applied Science and Manufacturing, 83, 98-112.
  • Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural fibre composites and their applications: A review. Journal of Composites Science, 2(4), 66.
  • Ayrilmis, N., & Ashori, A. (2016). Alternative solutions for reinforcement of thermoplastic composites. Natural Fiber Composites, CRC Press, 65-92.
  • Shubhra, Q. T. H., Alam, A. K. M. M., & Quaiyyum, M. A. (2011). Mechanical properties of polypropylene composites: A review. Journal of Thermoplastic Composite Materials, 26(3), 362-391.
  • Rocha, J. A., Steffen, T. T., Fontana, L. C., & Becker, D. (2021). Effect of maleic anhydride and oxygen functionalized carbon nanotube on polyamide 6 and polypropylene blend properties. Polymer Bulletin, 78, 5623-5639.
  • Kang, D. H., Hwang, S. W., Jung, B. N., & Shim, J. K. (2019). Characterization and morphological development of polypropylene/polyamide 6 blends using polyamide 6 powder and single-walled carbon nanotube. Journal of Composite Materials, 53(16), 2197-2207.
  • Do, V.-T., Nguyen-Tran, H.-D., & Chun, D.-M. (2016). Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite. Composite Structures, 150, 240-245.
  • Jha, N. S., Rathod, P., Wagh, S. M., & Pande, S. A. (2018). Investigation on the mechanical, thermal properties of polyamide 6/polypropylene blends with natural talc as filler. Proceedings of the International Conference on Multidimensional Role of Basic Science in Advanced Technology - ICMBAT 2018. 2104, 020019-1-020019-10.
  • Chow, W. S., Mohd Ishak, Z. A., Karger-Kocsis, J., Apostolov, A. A., & Ishiaku, U. S. (2003). Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer, 44, 7427-7440.
  • Gahleitner, M., Kretzschmar, B., Pospiech, D., Ingolic, E., Reichelt, N., & Bernreitner, K. (2006). Morphology and mechanical properties of polypropylene/polyamide 6 nanocomposites prepared by a two-step melt-compounding process. Journal of Applied Polymer Science, 200, 283-291.
  • Chow, W. S., Ishak, Z. A. M., Ishiaku, U. S., Karger-Kocsis, J., & Apostolov, A. A. (2004). The effect of organoclay on the mechanical properties and morphology of injection-molded polyamide 6/polypropylene nanocomposites. Journal of Applied Polymer Science, 91, 175-189.
  • Mimaroglu, A., Unal, H., & Yetgin, S. H. (2018). Tribological properties of nanoclay reinforced polyamide-6/polypropylene blend. Macromolecular Symposia, 379, 1700022.
  • Deshpande, S., & Rangaswamy, T. (2016). Sliding wear characteristics of bone powder filled hybrid fiber reinforced epoxy composites. IOSR Journal of Mechanical and Civil Engineering, 13(1), 68-78.
  • Omah, A. D., Okorie, B. A., Omah, E. C., Ezema, I. C., Aigbodion, V. S., & Offor, P. O. (2017). Measurement of dielectric properties of polymer matrix composites developed from cow bone powder. The International Journal of Advanced Manufacturing Technology, 88, 325-335.
  • Bhuiya, A. W., Hu, M., Sankar, K., Keane, P. F., Ribero, D., & Kriven, W. M. (2021). Bone ash reinforced geopolymer composites. Journal of the American Ceramic Society, 104, 2767-2779.
  • Younesi, M., & Bahrololoom, M. E. (2010). Effect of molecular weight, particle size and ringer’s solution on mechanical properties of surface-treated polypropylene-hydroxyapatite biocomposites. Journal of Composite Materials, 44(24), 2785-2799.
  • Asuke, F., Aigbodion, V. S., Abdulwahab, M., Fayomi, O. S. I., Popoola, A. P. I., Nwoyi, C. I., & Garba, B. (2012). Effects of bone particle on the properties and microstructure of polypropylene/bone ash particulate composites. Results in Physics, 2, 135-141.
  • Vignesh, K., Ramasivam, G., Natarajan, U., & Srinivasan, C. (2016). Optimization of process parameters to enhance the mechanical properties of bone powder and coir fiber reinforced polyester composites by Taguchi method. ARPN Journal of Engineering and Applied Sciences, 11(2), 1224-1231.
  • Oladele, I. O. (2013). Development of bone ash and bone particulate reinforced polyester composites for biomedical applications. Leonardo Electronic Journal of Practices and Technologies, 22, 15-26.
  • Oladele, I. O., Daramola, O. O., & Adewole, A. T. (2014). Comparative study of the reinforcement efficiency of cow bone and cow bone ash in polyester matrix composites for biomedical applications. Acta Tehnica Corviniensis –Bulletin of Engineering, 7(4), 27-34.
  • Adewole, T., & Oladele, I. (2015). Effect of cow bone ash particle size distribution on the mechanical properties of cow bone ash-reinforced polyester composites. Chemistry and Materials Research, 7(3), 40-46.
  • Oladele, I. O., & Isola, B. A. (2016). Development of bone particulate reinforced epoxy composite for biomedical application. Journal of Applied Biotechnology & Bioengineering, 1(1), 35-40.
  • Uddin, M.-J., Kodali, D., & Rangari, V. K. (2021). Effect of bone ash fillers on mechanical and thermal properties of biobased epoxy nanocomposites. Journal of Applied Polymer Science, 138:e50046, 1-13.
  • Krithiga, G., & Sastry, T. P. (2011). Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder. Bulletin of Materials Science, 34(1), 177-181.
  • Igwe, I. O., & Onuegbu, G. C. (2012). Studies on properties of egg shell and fish bone powder filled polypropylene. American Journal of Polymer Science, 2(4), 56-61.
  • Roeder, J., Oliveira, R. V. B., Gonçalves, M. C., Soldi, V., & Pires, A. T. N. (2002). Polypropylene/polyamide-6 blends: Influence of compatibilizing agent on interface domains. Polymer Testing, 21, 815-821.
  • Yoon, B. S., Joang, J. Y., Suh, M. H., Lee, Y. M., & Lee, S. H. (1997). Mechanical properties of polypropylene/polyamide 6 blends: Effect of manufacturing processes and compatibilization. Polymer Composites, 18(6), 757-764.
  • Zeng, N., Bai, S. L., G’Sell, C., Hiver, J.-M., & Mai, Y. W. (2002). Study on the microstructures and mechanical behaviour of compatibilized polypropylene/polyamide-6 blends. Polymer International, 51, 1439-1447.
  • Zhou, X., Zhang, P., Jiang, X., & Rao, G. (2009). Influence of maleic anhydride grafted polypropylene on the miscibility of polypropylene/polyamide-6 blends using ATR-FTIR mapping. Vibrational Spectroscopy, 49, 17-21.
  • Holsti-Miettinen, R., Seppälä, J., & Ikkala, O. T. (1992). Effects of compatibilizers on the properties of polyamide/ polypropylene blends. Polymer Engineering and Science, 32(13), 868-877.
  • El-Sabbagh, A. (2014). Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites Part B – Engineering, 57, 126-135.
  • Savaş, S., & Al-Obaidi, A. Y. (2018). Influence of PP-g-MA compatibilization on the mechanical and wear properties of polypropylene/thermoplastic polyurethane blends. Tribology Transactions, 61(4), 754-764.
  • Zhou, Z., Liu, X., Liu, L., & Yi, Q. (2009). Fabrication and properties of composite biomaterials composed of poly(l-lactide) and bovine bone. Designed Monomers and Polymers, 12, 57-67.
  • Morioka, Y., Tsuchiya, Y., & Shioya, M. (2015). Correlations between the abrasive wear, fatigue, and tensile properties of filler-dispersed polyamide 6. Wear, 338-339, 297-306.
  • Österle, W., Dmitriev, A. I., Wetzel, B., Zhang, G., Häusler, I., & Jim, B. C. (2016). The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite. Materials & Design, 93, 474-484.
  • Ravi Kumar, B. N., Suresha, B., & Venkataramareddy, M. (2009). Effect of particulate fillers on mechanical and abrasive wear behaviour of polyamide 66/polypropylene nanocomposites. Materials and Design, 30, 3852-3858.
  • Asuke, F., Abdulwahab, M., Aigbodion, V. S., Fayomi, O. S. I., & Aponbiede, O. (2014). Effect of load on the wear behaviour of polypropylene/carbonized bone ash particulate composite. Egyptian Journal of Basic and Applied Sciences, 1(1), 67-70.
  • Myshkin, N. K., Petrokovets, M. I., & Kovalev, A. V. (2005). Tribology of polymers: Adhesion, friction, wear, and mass-transfer. Tribology International, 38, 910-921.

Effect Of Bone Ash and Compatibilizer on the Mechanical Properties of PP/PA6 Matrix Composites

Yıl 2022, Cilt: 6 Sayı: 1, 118 - 128, 28.06.2022
https://doi.org/10.46460/ijiea.1065103

Öz

In this study, the effects of bone ash and maleic anhydride grafted polypropylene (MAPP) additives used in polypropylene (PP)/polyamide 6 (PA6) blends on the mechanical and also tribological properties of the composites were investigated. Bone powder is a waste material especially in food industry. The use of bone powder in polymer matrix composites is important because of the reduction of petroleum-based content in the composites and its advantage of biodegradable characteristic. The composites were produced using a twin-screw extruder by melt blending method and then molded to sample sizes to be used in mechanical and tribological tests by injection molding. Tensile test, three-point bending test, Shore D hardness test and ball-on-disc sliding wear tests were applied to the composites and the results were compared according to the composite composition. When the results were examined, it was found that the bone ash additive was more effective on the hardness and the compatibilizer additive was more effective on the tensile and bending strength. The highest mechanical properties were achieved with 20% and 30% bone ash additives. It has been found that bone ash is also very effective in reducing the friction coefficients, especially when used with compatibilizer it reduces the wear resistance significantly (up to 98%). In summary, PP/PA6 matrix composites obtained with the synergistic effect of bone ash and MAPP are promising for applications requiring mechanical and wear resistance.

Kaynakça

  • Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Ismadi, Damayanti, R., Subiyanto, B., Fatriasari, W., & Fudholi, A. (2021). A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. Journal of Materials Research and Technology, 13, 2442-2458.
  • Pickering, K. L., Aruan Efendy, M. G., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A – Applied Science and Manufacturing, 83, 98-112.
  • Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural fibre composites and their applications: A review. Journal of Composites Science, 2(4), 66.
  • Ayrilmis, N., & Ashori, A. (2016). Alternative solutions for reinforcement of thermoplastic composites. Natural Fiber Composites, CRC Press, 65-92.
  • Shubhra, Q. T. H., Alam, A. K. M. M., & Quaiyyum, M. A. (2011). Mechanical properties of polypropylene composites: A review. Journal of Thermoplastic Composite Materials, 26(3), 362-391.
  • Rocha, J. A., Steffen, T. T., Fontana, L. C., & Becker, D. (2021). Effect of maleic anhydride and oxygen functionalized carbon nanotube on polyamide 6 and polypropylene blend properties. Polymer Bulletin, 78, 5623-5639.
  • Kang, D. H., Hwang, S. W., Jung, B. N., & Shim, J. K. (2019). Characterization and morphological development of polypropylene/polyamide 6 blends using polyamide 6 powder and single-walled carbon nanotube. Journal of Composite Materials, 53(16), 2197-2207.
  • Do, V.-T., Nguyen-Tran, H.-D., & Chun, D.-M. (2016). Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite. Composite Structures, 150, 240-245.
  • Jha, N. S., Rathod, P., Wagh, S. M., & Pande, S. A. (2018). Investigation on the mechanical, thermal properties of polyamide 6/polypropylene blends with natural talc as filler. Proceedings of the International Conference on Multidimensional Role of Basic Science in Advanced Technology - ICMBAT 2018. 2104, 020019-1-020019-10.
  • Chow, W. S., Mohd Ishak, Z. A., Karger-Kocsis, J., Apostolov, A. A., & Ishiaku, U. S. (2003). Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer, 44, 7427-7440.
  • Gahleitner, M., Kretzschmar, B., Pospiech, D., Ingolic, E., Reichelt, N., & Bernreitner, K. (2006). Morphology and mechanical properties of polypropylene/polyamide 6 nanocomposites prepared by a two-step melt-compounding process. Journal of Applied Polymer Science, 200, 283-291.
  • Chow, W. S., Ishak, Z. A. M., Ishiaku, U. S., Karger-Kocsis, J., & Apostolov, A. A. (2004). The effect of organoclay on the mechanical properties and morphology of injection-molded polyamide 6/polypropylene nanocomposites. Journal of Applied Polymer Science, 91, 175-189.
  • Mimaroglu, A., Unal, H., & Yetgin, S. H. (2018). Tribological properties of nanoclay reinforced polyamide-6/polypropylene blend. Macromolecular Symposia, 379, 1700022.
  • Deshpande, S., & Rangaswamy, T. (2016). Sliding wear characteristics of bone powder filled hybrid fiber reinforced epoxy composites. IOSR Journal of Mechanical and Civil Engineering, 13(1), 68-78.
  • Omah, A. D., Okorie, B. A., Omah, E. C., Ezema, I. C., Aigbodion, V. S., & Offor, P. O. (2017). Measurement of dielectric properties of polymer matrix composites developed from cow bone powder. The International Journal of Advanced Manufacturing Technology, 88, 325-335.
  • Bhuiya, A. W., Hu, M., Sankar, K., Keane, P. F., Ribero, D., & Kriven, W. M. (2021). Bone ash reinforced geopolymer composites. Journal of the American Ceramic Society, 104, 2767-2779.
  • Younesi, M., & Bahrololoom, M. E. (2010). Effect of molecular weight, particle size and ringer’s solution on mechanical properties of surface-treated polypropylene-hydroxyapatite biocomposites. Journal of Composite Materials, 44(24), 2785-2799.
  • Asuke, F., Aigbodion, V. S., Abdulwahab, M., Fayomi, O. S. I., Popoola, A. P. I., Nwoyi, C. I., & Garba, B. (2012). Effects of bone particle on the properties and microstructure of polypropylene/bone ash particulate composites. Results in Physics, 2, 135-141.
  • Vignesh, K., Ramasivam, G., Natarajan, U., & Srinivasan, C. (2016). Optimization of process parameters to enhance the mechanical properties of bone powder and coir fiber reinforced polyester composites by Taguchi method. ARPN Journal of Engineering and Applied Sciences, 11(2), 1224-1231.
  • Oladele, I. O. (2013). Development of bone ash and bone particulate reinforced polyester composites for biomedical applications. Leonardo Electronic Journal of Practices and Technologies, 22, 15-26.
  • Oladele, I. O., Daramola, O. O., & Adewole, A. T. (2014). Comparative study of the reinforcement efficiency of cow bone and cow bone ash in polyester matrix composites for biomedical applications. Acta Tehnica Corviniensis –Bulletin of Engineering, 7(4), 27-34.
  • Adewole, T., & Oladele, I. (2015). Effect of cow bone ash particle size distribution on the mechanical properties of cow bone ash-reinforced polyester composites. Chemistry and Materials Research, 7(3), 40-46.
  • Oladele, I. O., & Isola, B. A. (2016). Development of bone particulate reinforced epoxy composite for biomedical application. Journal of Applied Biotechnology & Bioengineering, 1(1), 35-40.
  • Uddin, M.-J., Kodali, D., & Rangari, V. K. (2021). Effect of bone ash fillers on mechanical and thermal properties of biobased epoxy nanocomposites. Journal of Applied Polymer Science, 138:e50046, 1-13.
  • Krithiga, G., & Sastry, T. P. (2011). Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder. Bulletin of Materials Science, 34(1), 177-181.
  • Igwe, I. O., & Onuegbu, G. C. (2012). Studies on properties of egg shell and fish bone powder filled polypropylene. American Journal of Polymer Science, 2(4), 56-61.
  • Roeder, J., Oliveira, R. V. B., Gonçalves, M. C., Soldi, V., & Pires, A. T. N. (2002). Polypropylene/polyamide-6 blends: Influence of compatibilizing agent on interface domains. Polymer Testing, 21, 815-821.
  • Yoon, B. S., Joang, J. Y., Suh, M. H., Lee, Y. M., & Lee, S. H. (1997). Mechanical properties of polypropylene/polyamide 6 blends: Effect of manufacturing processes and compatibilization. Polymer Composites, 18(6), 757-764.
  • Zeng, N., Bai, S. L., G’Sell, C., Hiver, J.-M., & Mai, Y. W. (2002). Study on the microstructures and mechanical behaviour of compatibilized polypropylene/polyamide-6 blends. Polymer International, 51, 1439-1447.
  • Zhou, X., Zhang, P., Jiang, X., & Rao, G. (2009). Influence of maleic anhydride grafted polypropylene on the miscibility of polypropylene/polyamide-6 blends using ATR-FTIR mapping. Vibrational Spectroscopy, 49, 17-21.
  • Holsti-Miettinen, R., Seppälä, J., & Ikkala, O. T. (1992). Effects of compatibilizers on the properties of polyamide/ polypropylene blends. Polymer Engineering and Science, 32(13), 868-877.
  • El-Sabbagh, A. (2014). Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites Part B – Engineering, 57, 126-135.
  • Savaş, S., & Al-Obaidi, A. Y. (2018). Influence of PP-g-MA compatibilization on the mechanical and wear properties of polypropylene/thermoplastic polyurethane blends. Tribology Transactions, 61(4), 754-764.
  • Zhou, Z., Liu, X., Liu, L., & Yi, Q. (2009). Fabrication and properties of composite biomaterials composed of poly(l-lactide) and bovine bone. Designed Monomers and Polymers, 12, 57-67.
  • Morioka, Y., Tsuchiya, Y., & Shioya, M. (2015). Correlations between the abrasive wear, fatigue, and tensile properties of filler-dispersed polyamide 6. Wear, 338-339, 297-306.
  • Österle, W., Dmitriev, A. I., Wetzel, B., Zhang, G., Häusler, I., & Jim, B. C. (2016). The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite. Materials & Design, 93, 474-484.
  • Ravi Kumar, B. N., Suresha, B., & Venkataramareddy, M. (2009). Effect of particulate fillers on mechanical and abrasive wear behaviour of polyamide 66/polypropylene nanocomposites. Materials and Design, 30, 3852-3858.
  • Asuke, F., Abdulwahab, M., Aigbodion, V. S., Fayomi, O. S. I., & Aponbiede, O. (2014). Effect of load on the wear behaviour of polypropylene/carbonized bone ash particulate composite. Egyptian Journal of Basic and Applied Sciences, 1(1), 67-70.
  • Myshkin, N. K., Petrokovets, M. I., & Kovalev, A. V. (2005). Tribology of polymers: Adhesion, friction, wear, and mass-transfer. Tribology International, 38, 910-921.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Lemiye Atabek Savaş 0000-0002-6504-5846

Yusuf Uzunoğlu 0000-0002-9276-1733

Soner Savaş 0000-0002-6575-8133

Erken Görünüm Tarihi 25 Haziran 2022
Yayımlanma Tarihi 28 Haziran 2022
Gönderilme Tarihi 29 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 1

Kaynak Göster

APA Atabek Savaş, L., Uzunoğlu, Y., & Savaş, S. (2022). Kemik Külü ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi. International Journal of Innovative Engineering Applications, 6(1), 118-128. https://doi.org/10.46460/ijiea.1065103
AMA Atabek Savaş L, Uzunoğlu Y, Savaş S. Kemik Külü ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi. ijiea, IJIEA. Haziran 2022;6(1):118-128. doi:10.46460/ijiea.1065103
Chicago Atabek Savaş, Lemiye, Yusuf Uzunoğlu, ve Soner Savaş. “Kemik Külü Ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi”. International Journal of Innovative Engineering Applications 6, sy. 1 (Haziran 2022): 118-28. https://doi.org/10.46460/ijiea.1065103.
EndNote Atabek Savaş L, Uzunoğlu Y, Savaş S (01 Haziran 2022) Kemik Külü ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi. International Journal of Innovative Engineering Applications 6 1 118–128.
IEEE L. Atabek Savaş, Y. Uzunoğlu, ve S. Savaş, “Kemik Külü ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi”, ijiea, IJIEA, c. 6, sy. 1, ss. 118–128, 2022, doi: 10.46460/ijiea.1065103.
ISNAD Atabek Savaş, Lemiye vd. “Kemik Külü Ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi”. International Journal of Innovative Engineering Applications 6/1 (Haziran 2022), 118-128. https://doi.org/10.46460/ijiea.1065103.
JAMA Atabek Savaş L, Uzunoğlu Y, Savaş S. Kemik Külü ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi. ijiea, IJIEA. 2022;6:118–128.
MLA Atabek Savaş, Lemiye vd. “Kemik Külü Ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi”. International Journal of Innovative Engineering Applications, c. 6, sy. 1, 2022, ss. 118-2, doi:10.46460/ijiea.1065103.
Vancouver Atabek Savaş L, Uzunoğlu Y, Savaş S. Kemik Külü ve Uyumlaştırıcının PP/PA6 Matrisli Kompozitlerin Mekanik Özellikleri Üzerine Etkisi. ijiea, IJIEA. 2022;6(1):118-2.

This work is licensed under CC BY-NC 4.0