Review
BibTex RIS Cite

The Role of Heavy Metals in Cancer Development

Year 2023, Volume: 6 Issue: 1, 101 - 118, 15.04.2023
https://doi.org/10.38001/ijlsb.1176738

Abstract

Exposure to heavy metals represents significant health problems in the human population. These elements are effective in carcinogenesis as well as having the ability to produce adverse health effects. Research databases such as Pubmed contain studies of various exposures and cancers caused by these heavy metals. However, there is still a great lack of information on this subject. This study includes studies on exposure to heavy metals and which body systems are targeted.

References

  • Paithankar, J.G., et al., Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 2021. 262: p. 128350.
  • Bhattacharya, P.T., S.R. Misra, and M. Hussain, Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica (Cairo), 2016. 2016: p. 5464373.
  • Khuzestani, R.B. and B. Souri, Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran. J Environ Sci (China), 2013. 25(7): p. 1346-54.
  • Welling, R., et al., Chromium VI and stomach cancer: a meta-analysis of the current epidemiological evidence. Occup Environ Med, 2015. 72(2): p. 151-9.
  • Gunduz, O., et al., Statistical analysis of causes of death (2005-2010) in villages of Simav Plain, Turkey, with high arsenic levels in drinking water supplies. Arch Environ Occup Health, 2015. 70(1): p. 35-46.
  • Bhattacharyya, A., et al., Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev, 2014. 94(2): p. 329-54.
  • Valko, M., et al., Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 2006. 160(1): p. 1-40.
  • Romaniuk capital A, C., et al., Heavy metals effect on breast cancer progression. J Occup Med Toxicol, 2017. 12: p. 32.
  • Balali-Mood, M., et al., Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol, 2021. 12: p. 643972.
  • van Gerwen, M., et al., The role of heavy metals in thyroid cancer: A meta-analysis. J Trace Elem Med Biol, 2022. 69: p. 126900.
  • Mandriota, S.J., et al., Aluminium chloride promotes tumorigenesis and metastasis in normal murine mammary gland epithelial cells. Int J Cancer, 2016. 139(12): p. 2781-2790.
  • Farasani, A. and P.D. Darbre, Effects of aluminium chloride and aluminium chlorohydrate on DNA repair in MCF10A immortalised non-transformed human breast epithelial cells. J Inorg Biochem, 2015. 152: p. 186-9.
  • Roncati, L., et al., Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall. Ultrastruct Pathol, 2015. 39(4): p. 286-92.
  • Ostadrahimi, A., et al., The Association Between Urinary Cadmium Levels and Dietary Habits with Risk of Gastrointestinal Cancer in Tabriz, Northwest of Iran. Biol Trace Elem Res, 2017. 175(1): p. 72-78.
  • Ambiado, K., et al., Membrane technology applied to acid mine drainage from copper mining. Water Sci Technol, 2017. 75(3-4): p. 705-715.
  • Chiocchetti, G.M., D. Velez, and V. Devesa, Effect of subchronic exposure to inorganic arsenic on the structure and function of the intestinal epithelium. Toxicol Lett, 2018. 286: p. 80-88.
  • Martinez, V.D., et al., Arsenic exposure and the induction of human cancers. J Toxicol, 2011. 2011: p. 431287.
  • Chen, K., et al., Association of soil arsenic and nickel exposure with cancer mortality rates, a town-scale ecological study in Suzhou, China. Environ Sci Pollut Res Int, 2015. 22(7): p. 5395-404.
  • Nachman, K.E., et al., Mitigating dietary arsenic exposure: Current status in the United States and recommendations for an improved path forward. Sci Total Environ, 2017. 581-582: p. 221-236.
  • Satarug, S., D.A. Vesey, and G.C. Gobe, Kidney Cadmium Toxicity, Diabetes and High Blood Pressure: The Perfect Storm. Tohoku J Exp Med, 2017. 241(1): p. 65-87.
  • Amaral, A.F., et al., Pancreatic cancer risk and levels of trace elements. Gut, 2012. 61(11): p. 1583-8.
  • Cui, J., et al., M2 polarization of macrophages facilitates arsenic-induced cell transformation of lung epithelial cells. Oncotarget, 2017. 8(13): p. 21398-21409.
  • Park, Y.H., et al., Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol, 2015. 287(3): p. 240-5.
  • Hall, M.N., et al., Chronic arsenic exposure and blood glutathione and glutathione disulfide concentrations in Bangladeshi adults. Environ Health Perspect, 2013. 121(9): p. 1068-74.
  • Sykora, P. and E.T. Snow, Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite. Toxicol Appl Pharmacol, 2008. 228(3): p. 385-94.
  • Harper, L.K. and C.A. Bayse, Modeling the chelation of As(III) in lewisite by dithiols using density functional theory and solvent-assisted proton exchange. J Inorg Biochem, 2015. 153: p. 60-67.
  • Lu, P.H., et al., Survival without peripheral neuropathy after massive acute arsenic poisoning: Treated by 2,3-dimercaptopropane-1-sulphonate. J Clin Pharm Ther, 2017. 42(4): p. 506-508.
  • Medina, S., et al., Low level arsenite exposures suppress the development of bone marrow erythroid progenitors and result in anemia in adult male mice. Toxicol Lett, 2017. 273: p. 106-111.
  • Mandal, P., Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedebergs Arch Pharmacol, 2017. 390(5): p. 443-455.
  • Stanton, B.A., et al., MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic. Curr Environ Health Rep, 2015. 2(3): p. 329-37.
  • Shay, E., E. De Gandiaga, and A.K. Madl, Considerations for the development of health-based surface dust cleanup criteria for beryllium. Crit Rev Toxicol, 2013. 43(3): p. 220-43.
  • Hollins, D.M., et al., Beryllium and lung cancer: a weight of evidence evaluation of the toxicological and epidemiological literature. Crit Rev Toxicol, 2009. 39 Suppl 1: p. 1-32.
  • Stark, M., et al., Biological exposure metrics of beryllium-exposed dental technicians. Arch Environ Occup Health, 2014. 69(2): p. 89-99.
  • Benderli Cihan, Y., S. Sozen, and S. Ozturk Yildirim, Trace elements and heavy metals in hair of stage III breast cancer patients. Biol Trace Elem Res, 2011. 144(1-3): p. 360-79.
  • Radauceanu, A., et al., Effects of occupational exposure to poorly soluble forms of beryllium on biomarkers of pulmonary response in exhaled breath of workers in machining industries. Toxicol Lett, 2016. 263: p. 26-33.
  • Sharma, P., S. Johri, and S. Shukla, Beryllium-induced toxicity and its prevention by treatment with chelating agents. J Appl Toxicol, 2000. 20(4): p. 313-8.
  • Crinnion, W.J. and J.Q. Tran, Case report: heavy metal burden presenting as Bartter syndrome. Altern Med Rev, 2010. 15(4): p. 303-10.
  • Zhang, H. and M. Reynolds, Cadmium exposure in living organisms: A short review. Sci Total Environ, 2019. 678: p. 761-767.
  • Bertin, G. and D. Averbeck, Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie, 2006. 88(11): p. 1549-59.
  • Chunhabundit, R., Cadmium Exposure and Potential Health Risk from Foods in Contaminated Area, Thailand. Toxicol Res, 2016. 32(1): p. 65-72.
  • Alimba, C.G., et al., Chemical characterization of simulated landfill soil leachates from Nigeria and India and their cytotoxicity and DNA damage inductions on three human cell lines. Chemosphere, 2016. 164: p. 469-479.
  • Scharf, P., et al., Cellular and Molecular Mechanisms of Environmental Pollutants on Hematopoiesis. Int J Mol Sci, 2020. 21(19).
  • Nogawa, K., et al., Increase of lifetime cadmium intake dose-dependently increased all cause of mortality in female inhabitants of the cadmium-polluted Jinzu River basin, Toyama, Japan. Environ Res, 2018. 164: p. 379-384.
  • Cartularo, L., et al., Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium. Toxicol Appl Pharmacol, 2015. 288(3): p. 399-408.
  • Bishak, Y.K., et al., Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac J Cancer Prev, 2015. 16(1): p. 9-21.
  • Larsson, S.C., N. Orsini, and A. Wolk, Urinary cadmium concentration and risk of breast cancer: a systematic review and dose-response meta-analysis. Am J Epidemiol, 2015. 182(5): p. 375-80.
  • Mondal, B., et al., Analysis of Carcinogenic Heavy Metals in Gallstones and its Role in Gallbladder Carcinogenesis. J Gastrointest Cancer, 2017. 48(4): p. 361-368.
  • Khan, N., et al., Correlation of Cadmium and Magnesium in the Blood and Serum Samples of Smokers and Non-Smokers Chronic Leukemia Patients. Biol Trace Elem Res, 2017. 176(1): p. 81-88.
  • Lv, Y., et al., Cadmium Exposure and Osteoporosis: A Population-Based Study and Benchmark Dose Estimation in Southern China. J Bone Miner Res, 2017. 32(10): p. 1990-2000.
  • Xiao, C.L., et al., [Research progress of the mechanisms underlying cadmium-induced carcinogenesis]. Zhonghua Yu Fang Yi Xue Za Zhi, 2016. 50(4): p. 380-4.
  • Knight, A.S., E.Y. Zhou, and M.B. Francis, Development of Peptoid-Based Ligands for the Removal of Cadmium from Biological Media. Chem Sci, 2015. 7(6): p. 4042-4048.
  • Li, X., et al., Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity. Ann N Y Acad Sci, 2017. 1398(1): p. 5-19.
  • Wang, Y.J., et al., Bone marrow mesenchymal stem cells repair cadmium-induced rat testis injury by inhibiting mitochondrial apoptosis. Chem Biol Interact, 2017. 271: p. 39-47.
  • McCumber, A. and K.A. Strevett, A geospatial analysis of soil lead concentrations around regional Oklahoma airports. Chemosphere, 2017. 167: p. 62-70.
  • Orisakwe, O.E., et al., Lead Levels in Vegetables from Artisanal Mining Sites of Dilimi River, Bukuru and Barkin Ladi North Central Nigeria: Cancer and Non-Cancer Risk Assessment. Asian Pac J Cancer Prev, 2017. 18(3): p. 621-627.
  • Silbergeld, E.K., Facilitative mechanisms of lead as a carcinogen. Mutat Res, 2003. 533(1-2): p. 121-33.
  • Rashidi, M. and S.K. Alavipanah, Relation between kidney cancer and Soil leads in Isfahan Province, Iran between 2007 and 2009. J Cancer Res Ther, 2016. 12(2): p. 716-20.
  • Steenland, K., et al., A cohort mortality study of lead-exposed workers in the USA, Finland and the UK. Occup Environ Med, 2017. 74(11): p. 785-791.
  • Gazwi, H.S.S., E.E. Yassien, and H.M. Hassan, Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol Environ Saf, 2020. 192: p. 110297.
  • Silbergeld, E.K., M. Waalkes, and J.M. Rice, Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med, 2000. 38(3): p. 316-23.
  • Kianoush, S., M. Sadeghi, and M. Balali-Mood, Recent Advances in the Clinical Management of Lead Poisoning. Acta Med Iran, 2015. 53(6): p. 327-36.
  • Rice, K.M., et al., Environmental mercury and its toxic effects. J Prev Med Public Health, 2014. 47(2): p. 74-83.
  • Crespo-Lopez, M.E., et al., Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res, 2009. 60(4): p. 212-20.
  • Branco, V., et al., Biomarkers of mercury toxicity: Past, present, and future trends. J Toxicol Environ Health B Crit Rev, 2017. 20(3): p. 119-154.
  • Junque, E., et al., Integrated assessment of infant exposure to persistent organic pollutants and mercury via dietary intake in a central western Mediterranean site (Menorca Island). Environ Res, 2017. 156: p. 714-724.
  • Alcala-Orozco, M., et al., Mercury in canned tuna marketed in Cartagena, Colombia, and estimation of human exposure. Food Addit Contam Part B Surveill, 2017. 10(4): p. 241-247.
  • Yuan, W., N. Yang, and X. Li, Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer. Biomed Res Int, 2016. 2016: p. 7825432.
  • Kosnett, M.J., The role of chelation in the treatment of arsenic and mercury poisoning. J Med Toxicol, 2013. 9(4): p. 347-54.
  • Sears, M.E., Chelation: harnessing and enhancing heavy metal detoxification--a review. ScientificWorldJournal, 2013. 2013: p. 219840.
  • Iranmanesh, M., et al., Treatment of mercury vapor toxicity by combining deferasirox and deferiprone in rats. Biometals, 2013. 26(5): p. 783-8.
  • Sangvanich, T., et al., Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica. ACS Appl Mater Interfaces, 2014. 6(8): p. 5483-93.
  • Pamphlett, R., P.A. Doble, and D.P. Bishop, Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoS One, 2021. 16(2): p. e0246748.
  • Ngole-Jeme, V.M. and P. Fantke, Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS One, 2017. 12(2): p. e0172517.
  • Pavela, M., J. Uitti, and E. Pukkala, Cancer incidence among copper smelting and nickel refining workers in Finland. Am J Ind Med, 2017. 60(1): p. 87-95.
  • Plavan, G., et al., Toxic metals in tissues of fishes from the Black Sea and associated human health risk exposure. Environ Sci Pollut Res Int, 2017. 24(8): p. 7776-7787.
  • Zhou, C., et al., LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1alpha translation. Oncogene, 2017. 36(27): p. 3878-3889.
  • Huang, H., et al., Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy, 2016. 12(10): p. 1687-1703.
  • Yang, Y., et al., Urinary level of nickel and acute leukaemia in Chinese children. Toxicol Ind Health, 2008. 24(9): p. 603-10.
  • Ma, L., et al., Histone Methylation in Nickel-Smelting Industrial Workers. PLoS One, 2015. 10(10): p. e0140339.
  • Atma, W., et al., Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Int J Phytoremediation, 2017. 19(4): p. 377-386.
  • Gopal, R., et al., Chelating efficacy of CaNa(2) EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation. C R Biol, 2009. 332(8): p. 685-96.

Kanser Gelişiminde Ağır Metallerin Rolü

Year 2023, Volume: 6 Issue: 1, 101 - 118, 15.04.2023
https://doi.org/10.38001/ijlsb.1176738

Abstract

Ağır metallere maruz kalma, insan popülasyonunda önemli sağlık sorunlarını temsil etmektedir. Bu elementler, olumsuz sağlık etkisi yaratma yeteneğine sahip olmasının yanı sıra karsinojenezde de etkilidirler. Pubmed gibi araştırma veritabanlarında, bu ağır metallerin neden olduğu çeşitli maruziyetler ve kanserlerle ilgili çalışmalar bulunmaktadır. Ancak, yine de bu konuda büyük ölçüde bilgi eksikliği vardır. Bu çalışma, maruz kalınan ağır metallere ve hangi vücut sistemlerinin hedeflendiğine ilişkin çalışmaları içermektedir.

References

  • Paithankar, J.G., et al., Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 2021. 262: p. 128350.
  • Bhattacharya, P.T., S.R. Misra, and M. Hussain, Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica (Cairo), 2016. 2016: p. 5464373.
  • Khuzestani, R.B. and B. Souri, Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran. J Environ Sci (China), 2013. 25(7): p. 1346-54.
  • Welling, R., et al., Chromium VI and stomach cancer: a meta-analysis of the current epidemiological evidence. Occup Environ Med, 2015. 72(2): p. 151-9.
  • Gunduz, O., et al., Statistical analysis of causes of death (2005-2010) in villages of Simav Plain, Turkey, with high arsenic levels in drinking water supplies. Arch Environ Occup Health, 2015. 70(1): p. 35-46.
  • Bhattacharyya, A., et al., Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev, 2014. 94(2): p. 329-54.
  • Valko, M., et al., Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 2006. 160(1): p. 1-40.
  • Romaniuk capital A, C., et al., Heavy metals effect on breast cancer progression. J Occup Med Toxicol, 2017. 12: p. 32.
  • Balali-Mood, M., et al., Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol, 2021. 12: p. 643972.
  • van Gerwen, M., et al., The role of heavy metals in thyroid cancer: A meta-analysis. J Trace Elem Med Biol, 2022. 69: p. 126900.
  • Mandriota, S.J., et al., Aluminium chloride promotes tumorigenesis and metastasis in normal murine mammary gland epithelial cells. Int J Cancer, 2016. 139(12): p. 2781-2790.
  • Farasani, A. and P.D. Darbre, Effects of aluminium chloride and aluminium chlorohydrate on DNA repair in MCF10A immortalised non-transformed human breast epithelial cells. J Inorg Biochem, 2015. 152: p. 186-9.
  • Roncati, L., et al., Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall. Ultrastruct Pathol, 2015. 39(4): p. 286-92.
  • Ostadrahimi, A., et al., The Association Between Urinary Cadmium Levels and Dietary Habits with Risk of Gastrointestinal Cancer in Tabriz, Northwest of Iran. Biol Trace Elem Res, 2017. 175(1): p. 72-78.
  • Ambiado, K., et al., Membrane technology applied to acid mine drainage from copper mining. Water Sci Technol, 2017. 75(3-4): p. 705-715.
  • Chiocchetti, G.M., D. Velez, and V. Devesa, Effect of subchronic exposure to inorganic arsenic on the structure and function of the intestinal epithelium. Toxicol Lett, 2018. 286: p. 80-88.
  • Martinez, V.D., et al., Arsenic exposure and the induction of human cancers. J Toxicol, 2011. 2011: p. 431287.
  • Chen, K., et al., Association of soil arsenic and nickel exposure with cancer mortality rates, a town-scale ecological study in Suzhou, China. Environ Sci Pollut Res Int, 2015. 22(7): p. 5395-404.
  • Nachman, K.E., et al., Mitigating dietary arsenic exposure: Current status in the United States and recommendations for an improved path forward. Sci Total Environ, 2017. 581-582: p. 221-236.
  • Satarug, S., D.A. Vesey, and G.C. Gobe, Kidney Cadmium Toxicity, Diabetes and High Blood Pressure: The Perfect Storm. Tohoku J Exp Med, 2017. 241(1): p. 65-87.
  • Amaral, A.F., et al., Pancreatic cancer risk and levels of trace elements. Gut, 2012. 61(11): p. 1583-8.
  • Cui, J., et al., M2 polarization of macrophages facilitates arsenic-induced cell transformation of lung epithelial cells. Oncotarget, 2017. 8(13): p. 21398-21409.
  • Park, Y.H., et al., Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol, 2015. 287(3): p. 240-5.
  • Hall, M.N., et al., Chronic arsenic exposure and blood glutathione and glutathione disulfide concentrations in Bangladeshi adults. Environ Health Perspect, 2013. 121(9): p. 1068-74.
  • Sykora, P. and E.T. Snow, Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite. Toxicol Appl Pharmacol, 2008. 228(3): p. 385-94.
  • Harper, L.K. and C.A. Bayse, Modeling the chelation of As(III) in lewisite by dithiols using density functional theory and solvent-assisted proton exchange. J Inorg Biochem, 2015. 153: p. 60-67.
  • Lu, P.H., et al., Survival without peripheral neuropathy after massive acute arsenic poisoning: Treated by 2,3-dimercaptopropane-1-sulphonate. J Clin Pharm Ther, 2017. 42(4): p. 506-508.
  • Medina, S., et al., Low level arsenite exposures suppress the development of bone marrow erythroid progenitors and result in anemia in adult male mice. Toxicol Lett, 2017. 273: p. 106-111.
  • Mandal, P., Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedebergs Arch Pharmacol, 2017. 390(5): p. 443-455.
  • Stanton, B.A., et al., MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic. Curr Environ Health Rep, 2015. 2(3): p. 329-37.
  • Shay, E., E. De Gandiaga, and A.K. Madl, Considerations for the development of health-based surface dust cleanup criteria for beryllium. Crit Rev Toxicol, 2013. 43(3): p. 220-43.
  • Hollins, D.M., et al., Beryllium and lung cancer: a weight of evidence evaluation of the toxicological and epidemiological literature. Crit Rev Toxicol, 2009. 39 Suppl 1: p. 1-32.
  • Stark, M., et al., Biological exposure metrics of beryllium-exposed dental technicians. Arch Environ Occup Health, 2014. 69(2): p. 89-99.
  • Benderli Cihan, Y., S. Sozen, and S. Ozturk Yildirim, Trace elements and heavy metals in hair of stage III breast cancer patients. Biol Trace Elem Res, 2011. 144(1-3): p. 360-79.
  • Radauceanu, A., et al., Effects of occupational exposure to poorly soluble forms of beryllium on biomarkers of pulmonary response in exhaled breath of workers in machining industries. Toxicol Lett, 2016. 263: p. 26-33.
  • Sharma, P., S. Johri, and S. Shukla, Beryllium-induced toxicity and its prevention by treatment with chelating agents. J Appl Toxicol, 2000. 20(4): p. 313-8.
  • Crinnion, W.J. and J.Q. Tran, Case report: heavy metal burden presenting as Bartter syndrome. Altern Med Rev, 2010. 15(4): p. 303-10.
  • Zhang, H. and M. Reynolds, Cadmium exposure in living organisms: A short review. Sci Total Environ, 2019. 678: p. 761-767.
  • Bertin, G. and D. Averbeck, Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie, 2006. 88(11): p. 1549-59.
  • Chunhabundit, R., Cadmium Exposure and Potential Health Risk from Foods in Contaminated Area, Thailand. Toxicol Res, 2016. 32(1): p. 65-72.
  • Alimba, C.G., et al., Chemical characterization of simulated landfill soil leachates from Nigeria and India and their cytotoxicity and DNA damage inductions on three human cell lines. Chemosphere, 2016. 164: p. 469-479.
  • Scharf, P., et al., Cellular and Molecular Mechanisms of Environmental Pollutants on Hematopoiesis. Int J Mol Sci, 2020. 21(19).
  • Nogawa, K., et al., Increase of lifetime cadmium intake dose-dependently increased all cause of mortality in female inhabitants of the cadmium-polluted Jinzu River basin, Toyama, Japan. Environ Res, 2018. 164: p. 379-384.
  • Cartularo, L., et al., Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium. Toxicol Appl Pharmacol, 2015. 288(3): p. 399-408.
  • Bishak, Y.K., et al., Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac J Cancer Prev, 2015. 16(1): p. 9-21.
  • Larsson, S.C., N. Orsini, and A. Wolk, Urinary cadmium concentration and risk of breast cancer: a systematic review and dose-response meta-analysis. Am J Epidemiol, 2015. 182(5): p. 375-80.
  • Mondal, B., et al., Analysis of Carcinogenic Heavy Metals in Gallstones and its Role in Gallbladder Carcinogenesis. J Gastrointest Cancer, 2017. 48(4): p. 361-368.
  • Khan, N., et al., Correlation of Cadmium and Magnesium in the Blood and Serum Samples of Smokers and Non-Smokers Chronic Leukemia Patients. Biol Trace Elem Res, 2017. 176(1): p. 81-88.
  • Lv, Y., et al., Cadmium Exposure and Osteoporosis: A Population-Based Study and Benchmark Dose Estimation in Southern China. J Bone Miner Res, 2017. 32(10): p. 1990-2000.
  • Xiao, C.L., et al., [Research progress of the mechanisms underlying cadmium-induced carcinogenesis]. Zhonghua Yu Fang Yi Xue Za Zhi, 2016. 50(4): p. 380-4.
  • Knight, A.S., E.Y. Zhou, and M.B. Francis, Development of Peptoid-Based Ligands for the Removal of Cadmium from Biological Media. Chem Sci, 2015. 7(6): p. 4042-4048.
  • Li, X., et al., Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity. Ann N Y Acad Sci, 2017. 1398(1): p. 5-19.
  • Wang, Y.J., et al., Bone marrow mesenchymal stem cells repair cadmium-induced rat testis injury by inhibiting mitochondrial apoptosis. Chem Biol Interact, 2017. 271: p. 39-47.
  • McCumber, A. and K.A. Strevett, A geospatial analysis of soil lead concentrations around regional Oklahoma airports. Chemosphere, 2017. 167: p. 62-70.
  • Orisakwe, O.E., et al., Lead Levels in Vegetables from Artisanal Mining Sites of Dilimi River, Bukuru and Barkin Ladi North Central Nigeria: Cancer and Non-Cancer Risk Assessment. Asian Pac J Cancer Prev, 2017. 18(3): p. 621-627.
  • Silbergeld, E.K., Facilitative mechanisms of lead as a carcinogen. Mutat Res, 2003. 533(1-2): p. 121-33.
  • Rashidi, M. and S.K. Alavipanah, Relation between kidney cancer and Soil leads in Isfahan Province, Iran between 2007 and 2009. J Cancer Res Ther, 2016. 12(2): p. 716-20.
  • Steenland, K., et al., A cohort mortality study of lead-exposed workers in the USA, Finland and the UK. Occup Environ Med, 2017. 74(11): p. 785-791.
  • Gazwi, H.S.S., E.E. Yassien, and H.M. Hassan, Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol Environ Saf, 2020. 192: p. 110297.
  • Silbergeld, E.K., M. Waalkes, and J.M. Rice, Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med, 2000. 38(3): p. 316-23.
  • Kianoush, S., M. Sadeghi, and M. Balali-Mood, Recent Advances in the Clinical Management of Lead Poisoning. Acta Med Iran, 2015. 53(6): p. 327-36.
  • Rice, K.M., et al., Environmental mercury and its toxic effects. J Prev Med Public Health, 2014. 47(2): p. 74-83.
  • Crespo-Lopez, M.E., et al., Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res, 2009. 60(4): p. 212-20.
  • Branco, V., et al., Biomarkers of mercury toxicity: Past, present, and future trends. J Toxicol Environ Health B Crit Rev, 2017. 20(3): p. 119-154.
  • Junque, E., et al., Integrated assessment of infant exposure to persistent organic pollutants and mercury via dietary intake in a central western Mediterranean site (Menorca Island). Environ Res, 2017. 156: p. 714-724.
  • Alcala-Orozco, M., et al., Mercury in canned tuna marketed in Cartagena, Colombia, and estimation of human exposure. Food Addit Contam Part B Surveill, 2017. 10(4): p. 241-247.
  • Yuan, W., N. Yang, and X. Li, Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer. Biomed Res Int, 2016. 2016: p. 7825432.
  • Kosnett, M.J., The role of chelation in the treatment of arsenic and mercury poisoning. J Med Toxicol, 2013. 9(4): p. 347-54.
  • Sears, M.E., Chelation: harnessing and enhancing heavy metal detoxification--a review. ScientificWorldJournal, 2013. 2013: p. 219840.
  • Iranmanesh, M., et al., Treatment of mercury vapor toxicity by combining deferasirox and deferiprone in rats. Biometals, 2013. 26(5): p. 783-8.
  • Sangvanich, T., et al., Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica. ACS Appl Mater Interfaces, 2014. 6(8): p. 5483-93.
  • Pamphlett, R., P.A. Doble, and D.P. Bishop, Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoS One, 2021. 16(2): p. e0246748.
  • Ngole-Jeme, V.M. and P. Fantke, Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS One, 2017. 12(2): p. e0172517.
  • Pavela, M., J. Uitti, and E. Pukkala, Cancer incidence among copper smelting and nickel refining workers in Finland. Am J Ind Med, 2017. 60(1): p. 87-95.
  • Plavan, G., et al., Toxic metals in tissues of fishes from the Black Sea and associated human health risk exposure. Environ Sci Pollut Res Int, 2017. 24(8): p. 7776-7787.
  • Zhou, C., et al., LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1alpha translation. Oncogene, 2017. 36(27): p. 3878-3889.
  • Huang, H., et al., Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy, 2016. 12(10): p. 1687-1703.
  • Yang, Y., et al., Urinary level of nickel and acute leukaemia in Chinese children. Toxicol Ind Health, 2008. 24(9): p. 603-10.
  • Ma, L., et al., Histone Methylation in Nickel-Smelting Industrial Workers. PLoS One, 2015. 10(10): p. e0140339.
  • Atma, W., et al., Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Int J Phytoremediation, 2017. 19(4): p. 377-386.
  • Gopal, R., et al., Chelating efficacy of CaNa(2) EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation. C R Biol, 2009. 332(8): p. 685-96.
There are 81 citations in total.

Details

Primary Language Turkish
Journal Section Review Articles
Authors

Nebiye Pelin Türker 0000-0001-6060-3557

Publication Date April 15, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

EndNote Türker NP (April 1, 2023) Kanser Gelişiminde Ağır Metallerin Rolü. International Journal of Life Sciences and Biotechnology 6 1 101–118.



Follow us on social networks  19277 19276 20153  22366