Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method

Yıl 2022, , 331 - 341, 31.12.2022
https://doi.org/10.29132/ijpas.1092339

Öz

In this study, the hemp stem (cannabis) nanofibers have been produced employing the electrospinning method by changing parameters including voltage, and deposition time. The nanosized particles of hemp stems have been mechanically produced by ball milling technique. The powder hemp stem obtained by ball-milling have been prepared in polyacrylonitrile (PAN) polymer with N, N-dimethylformamide (DMF) solution. The optical, morphological and chemical bonding properties of the obtained hemp nanofibers have been analysed employing Ultraviolet-Visible-Near infrared (UV-Vis-NIR) spectroscopy, Scanning Electron Microscopy (SEM) and Fourier Transform Infra-Red (FTIR) spectroscopy, respectively. The diameters of hemp stems nanofibers with PAN polymer have been obtained ranging from 30 to few hundreds of nanometre. Absorbance spectrum of PAN: Hemp stems have been plotted covering from UV to infrared region. Energy band gap value has been calculated as 3.5 eV using Tauc-plotting equations. PAN: Hemp stems has absorbed more photons in UV and visible regions than infrared region. In order to determine the thermal endurance of the produced hemp nanofibers, Thermogravimetric Analysis (TGA) has been carried out for temperatures up to 800 oC. TGA measurements has inferred that both PAN and Hemp stem nanofibers continue losing weight gradually after first sharp decrease at around 300 oC and almost completely disintegrate at 800 oC.

Destekleyen Kurum

Dicle University Scientific Research Projects Coordinatorship, Selcuk University Scientific Research Coordinatorship

Proje Numarası

FEN.007

Teşekkür

Selcuk University Scientific Research Project (BAP) Coordination for the support projects - Selçuk University, High Technology Research and Application Centre (İL-TEK) and SULTAN Centre for infrastructures. -Dicle University Scientific Research Coordinatorship for supporting this work under project number FEN.20.007.

Kaynakça

  • Agarwal, S., Burgard, M., Greiner, A. and Wendorff, J. (2016). Electrospinning: de Gruyter.
  • Andriotis, E. G., Chachlioutaki, K., Monou, P. K., Bouropoulos, N., Tzetzis, D., Barmpalexis, P., . . . Fatouros, D. G. (2021). Development of Water-Soluble Electrospun Fibers for the Oral Delivery of Cannabinoids. AAPS PharmSciTech, 22(1), 1-14.
  • Cassano, R., Trombino, S., Ferrarelli, T., Nicoletta, F. P., Mauro, M. V., Giraldi, C. and Picci, N. (2013). Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose, 20(1), 547-557.
  • Deiana, S. (2017). Potential medical uses of cannabigerol: a brief overview. Handbook of Cannabis and Related Pathologies, 958-967.
  • Fahimirad, S., Abtahi, H., Satei, P., Ghaznavi-Rad, E., Moslehi, M. and Ganji, A. (2021). Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydrate polymers, 259, 117640.
  • Fang, J., Wang, X. and Lin, T. (2011). Functional applications of electrospun nanofibers. Nanofibers-production, properties and functional applications, 14, 287-302.
  • Gao, H., He, W., Zhao, Y.-B., Opris, D. M., Xu, G. and Wang, J. (2020). Electret mechanisms and kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison with corona-charged membranes. Journal of Membrane Science, 600, 117879.
  • Gezgin, S. Y., Houimi, A., Gündoğdu, Y., Mercimek, B. and Kılıç, H. Ş. (2021). Determination of photovoltaic parameters of CIGS hetero junction solar cells produced by PLD technique, using SCAPS simulation program. Vacuum, 192, 110451.
  • Gibson, P., Schreuder‐Gibson, H. and Rivin, D. (1999). Electrospun fiber mats: transport properties. AIChE journal, 45(1), 190-195.
  • Goroškaitė, S. (2020). The formation and analysis of electrospun materials from nano-microfibers with hemp extract. Kauno technologijos universitetas.
  • Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z. and Jing, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of controlled release, 185, 12-21.
  • Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. and Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63(15), 2223-2253.
  • Kalantari, K., Afifi, A. M., Jahangirian, H. and Webster, T. J. (2019). Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review. Carbohydrate polymers, 207, 588-600.
  • Kamoun, E. A., Loutfy, S. A., Hussein, Y. and Kenawy, E.-R. S. (2021). Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. International Journal of Biological Macromolecules, 187, 755-768.
  • Kamsani, N. H., Haris, M. S., Pandey, M., Taher, M. and Rullah, K. (2021). Biomedical application of responsive ‘smart’electrospun nanofibers in drug delivery system: A minireview. Arabian Journal of Chemistry, 14(7), 103199.
  • Kariduraganavar, M. Y., Kittur, A. A. and Kamble, R. R. (2014). Polymer synthesis and processing. In Natural and synthetic biomedical polymers (pp. 1-31): Elsevier.
  • Khanzada, H., Salam, A., Qadir, M. B., Phan, D.-N., Hassan, T., Munir, M. U., . . . Kim, I. S. (2020). Fabrication of promising antimicrobial aloe vera/PVA electrospun nanofibers for protective clothing. Materials, 13(17), 3884.
  • Liao, J., Zhang, S. and Tang, X. (2020). Sound absorption of hemp fibers (Cannabis Sativa L.) based nonwoven fabrics and composites: A review. Journal of Natural Fibers, 1-13.
  • Lin, W., Chen, M., Qu, T., Li, J. and Man, Y. (2020). Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(4), 1311-1321.
  • Liu, Y., Zhou, S., Gao, Y. and Zhai, Y. (2019). Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian Journal of Pharmaceutical Sciences, 14(2), 130-143.
  • Lv, D., Zhu, M., Jiang, Z., Jiang, S., Zhang, Q., Xiong, R. and Huang, C. (2018). Green electrospun nanofibers and their application in air filtration. Macromolecular Materials and Engineering, 303(12), 1800336.
  • Mohammed, M., Atabani, A., Uguz, G., Lay, C.-H., Kumar, G. and Al-Samaraae, R. (2020). Characterization of hemp (Cannabis sativa L.) biodiesel blends with euro diesel, butanol and diethyl ether using FT-IR, UV–Vis, TGA and DSC techniques. Waste and Biomass Valorization, 11(3), 1097-1113.
  • Mohtaram, F., Borhani, S., Ahmadpour, M., Fojan, P., Behjat, A., Rubahn, H.-G. and Madsen, M. (2020). Electrospun ZnO nanofiber interlayers for enhanced performance of organic photovoltaic devices. Solar Energy, 197, 311-316.
  • Stepanyan, R., Subbotin, A., Cuperus, L., Boonen, P., Dorschu, M., Oosterlinck, F. and Bulters, M. (2016). Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer, 97, 428-439.
  • Sutka, A., Gravitis, J., Kukle, S., Sutka, A. and Timusk, M. (2015). Electrospinning of poly (vinyl alcohol) nanofiber mats reinforced by lignocellulose nanowhiskers. Soft Materials, 13(1), 18-23.
  • Theron, S., Zussman, E. and Yarin, A. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030.
  • Xue, J., Wu, T., Dai, Y. and Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.
  • Yang, E., Qin, X. and Wang, S. (2008). Electrospun crosslinked polyvinyl alcohol membrane. Materials Letters, 62(20), 3555-3557.
  • Zaarour, B., Zhu, L. and Jin, X. (2020). A review on the secondary surface morphology of electrospun nanofibers: formation mechanisms, characterizations, and applications. ChemistrySelect, 5(4), 1335-1348.

Elektro Eğirme Yöntemiyle Üretilen PAN:Kenevir Saplı Nanoliflerin İncelenmesi

Yıl 2022, , 331 - 341, 31.12.2022
https://doi.org/10.29132/ijpas.1092339

Öz

Bu çalışmada, voltaj, substrat-iğne uzaklığı ve biriktirme süresi gibi parametreler değiştirilerek elektro-eğirme yöntemi kullanılarak kenevir sapı (kenevir) nanolifleri üretilmiştir. Kenevir saplarının nano boyutlu parçacıkları, bilyalı öğütme tekniği ile mekanik olarak üretilmiştir. Bilyalı öğütme ile elde edilen toz kenevir sapı poliakrilonitril (PAN) polimerinde N,N-dimetilformamid (DMF) çözeltisi ile hazırlanmıştır. Elde edilen kenevir nanoliflerinin optik, morfolojik ve kimyasal bağlanma özellikleri sırasıyla Ultraviyole-Görünür-Yakın kızılötesi (UV-Vis-NIR) spektroskopisi, Taramalı Elektron Mikroskobu (SEM) ve Fourier Dönüşümü Kızılötesi (FTIR) spektroskopisi kullanılarak analiz edilmiştir. PAN polimerli kenevir sapı nanoliflerin çapları 30 ila birkaç yüz nanometre arasında değişmektedir. PAN'ın absorpsiyon spektrumu: Kenevir sapları UV'den kızılötesi bölgeye kadar çizildi. Enerji bant aralığı değeri, Tauc-plotting denklemleri kullanılarak 3.5 eV olarak hesaplanmıştır. PAN: Kenevir sapları, UV ve görünür bölgelerde kızılötesi bölgeye göre daha fazla foton emmiştir. Üretilen kenevir nanoliflerinin termal dayanıklılığını belirlemek için 800 oC'ye kadar olan sıcaklıklar için Termogravimetrik Analiz (TGA) yapılmıştır. TGA ölçümleri, hem PAN hem de Kenevir sapı nanoliflerinin 300 oC civarındaki ilk keskin düşüşten sonra kademeli olarak ağırlık kaybetmeye devam ettiğini ve 800 oC'de neredeyse tamamen parçalandığını ortaya çıkardı.

Proje Numarası

FEN.007

Kaynakça

  • Agarwal, S., Burgard, M., Greiner, A. and Wendorff, J. (2016). Electrospinning: de Gruyter.
  • Andriotis, E. G., Chachlioutaki, K., Monou, P. K., Bouropoulos, N., Tzetzis, D., Barmpalexis, P., . . . Fatouros, D. G. (2021). Development of Water-Soluble Electrospun Fibers for the Oral Delivery of Cannabinoids. AAPS PharmSciTech, 22(1), 1-14.
  • Cassano, R., Trombino, S., Ferrarelli, T., Nicoletta, F. P., Mauro, M. V., Giraldi, C. and Picci, N. (2013). Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose, 20(1), 547-557.
  • Deiana, S. (2017). Potential medical uses of cannabigerol: a brief overview. Handbook of Cannabis and Related Pathologies, 958-967.
  • Fahimirad, S., Abtahi, H., Satei, P., Ghaznavi-Rad, E., Moslehi, M. and Ganji, A. (2021). Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydrate polymers, 259, 117640.
  • Fang, J., Wang, X. and Lin, T. (2011). Functional applications of electrospun nanofibers. Nanofibers-production, properties and functional applications, 14, 287-302.
  • Gao, H., He, W., Zhao, Y.-B., Opris, D. M., Xu, G. and Wang, J. (2020). Electret mechanisms and kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison with corona-charged membranes. Journal of Membrane Science, 600, 117879.
  • Gezgin, S. Y., Houimi, A., Gündoğdu, Y., Mercimek, B. and Kılıç, H. Ş. (2021). Determination of photovoltaic parameters of CIGS hetero junction solar cells produced by PLD technique, using SCAPS simulation program. Vacuum, 192, 110451.
  • Gibson, P., Schreuder‐Gibson, H. and Rivin, D. (1999). Electrospun fiber mats: transport properties. AIChE journal, 45(1), 190-195.
  • Goroškaitė, S. (2020). The formation and analysis of electrospun materials from nano-microfibers with hemp extract. Kauno technologijos universitetas.
  • Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z. and Jing, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of controlled release, 185, 12-21.
  • Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. and Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63(15), 2223-2253.
  • Kalantari, K., Afifi, A. M., Jahangirian, H. and Webster, T. J. (2019). Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review. Carbohydrate polymers, 207, 588-600.
  • Kamoun, E. A., Loutfy, S. A., Hussein, Y. and Kenawy, E.-R. S. (2021). Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. International Journal of Biological Macromolecules, 187, 755-768.
  • Kamsani, N. H., Haris, M. S., Pandey, M., Taher, M. and Rullah, K. (2021). Biomedical application of responsive ‘smart’electrospun nanofibers in drug delivery system: A minireview. Arabian Journal of Chemistry, 14(7), 103199.
  • Kariduraganavar, M. Y., Kittur, A. A. and Kamble, R. R. (2014). Polymer synthesis and processing. In Natural and synthetic biomedical polymers (pp. 1-31): Elsevier.
  • Khanzada, H., Salam, A., Qadir, M. B., Phan, D.-N., Hassan, T., Munir, M. U., . . . Kim, I. S. (2020). Fabrication of promising antimicrobial aloe vera/PVA electrospun nanofibers for protective clothing. Materials, 13(17), 3884.
  • Liao, J., Zhang, S. and Tang, X. (2020). Sound absorption of hemp fibers (Cannabis Sativa L.) based nonwoven fabrics and composites: A review. Journal of Natural Fibers, 1-13.
  • Lin, W., Chen, M., Qu, T., Li, J. and Man, Y. (2020). Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(4), 1311-1321.
  • Liu, Y., Zhou, S., Gao, Y. and Zhai, Y. (2019). Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian Journal of Pharmaceutical Sciences, 14(2), 130-143.
  • Lv, D., Zhu, M., Jiang, Z., Jiang, S., Zhang, Q., Xiong, R. and Huang, C. (2018). Green electrospun nanofibers and their application in air filtration. Macromolecular Materials and Engineering, 303(12), 1800336.
  • Mohammed, M., Atabani, A., Uguz, G., Lay, C.-H., Kumar, G. and Al-Samaraae, R. (2020). Characterization of hemp (Cannabis sativa L.) biodiesel blends with euro diesel, butanol and diethyl ether using FT-IR, UV–Vis, TGA and DSC techniques. Waste and Biomass Valorization, 11(3), 1097-1113.
  • Mohtaram, F., Borhani, S., Ahmadpour, M., Fojan, P., Behjat, A., Rubahn, H.-G. and Madsen, M. (2020). Electrospun ZnO nanofiber interlayers for enhanced performance of organic photovoltaic devices. Solar Energy, 197, 311-316.
  • Stepanyan, R., Subbotin, A., Cuperus, L., Boonen, P., Dorschu, M., Oosterlinck, F. and Bulters, M. (2016). Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer, 97, 428-439.
  • Sutka, A., Gravitis, J., Kukle, S., Sutka, A. and Timusk, M. (2015). Electrospinning of poly (vinyl alcohol) nanofiber mats reinforced by lignocellulose nanowhiskers. Soft Materials, 13(1), 18-23.
  • Theron, S., Zussman, E. and Yarin, A. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030.
  • Xue, J., Wu, T., Dai, Y. and Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.
  • Yang, E., Qin, X. and Wang, S. (2008). Electrospun crosslinked polyvinyl alcohol membrane. Materials Letters, 62(20), 3555-3557.
  • Zaarour, B., Zhu, L. and Jin, X. (2020). A review on the secondary surface morphology of electrospun nanofibers: formation mechanisms, characterizations, and applications. ChemistrySelect, 5(4), 1335-1348.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ülker Yalçın Erbastı 0000-0001-8668-2927

İlhan Candan 0000-0001-9489-5324

Yasemin Gündoğdu 0000-0003-2020-9533

Hadice Budak Gümgüm 0000-0003-1993-5247

Hamdi Şükür Kılıç 0000-0002-7546-4243

Proje Numarası FEN.007
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 24 Mart 2022
Kabul Tarihi 27 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yalçın Erbastı, Ü., Candan, İ., Gündoğdu, Y., Budak Gümgüm, H., vd. (2022). Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method. International Journal of Pure and Applied Sciences, 8(2), 331-341. https://doi.org/10.29132/ijpas.1092339
AMA Yalçın Erbastı Ü, Candan İ, Gündoğdu Y, Budak Gümgüm H, Kılıç HŞ. Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method. International Journal of Pure and Applied Sciences. Aralık 2022;8(2):331-341. doi:10.29132/ijpas.1092339
Chicago Yalçın Erbastı, Ülker, İlhan Candan, Yasemin Gündoğdu, Hadice Budak Gümgüm, ve Hamdi Şükür Kılıç. “Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method”. International Journal of Pure and Applied Sciences 8, sy. 2 (Aralık 2022): 331-41. https://doi.org/10.29132/ijpas.1092339.
EndNote Yalçın Erbastı Ü, Candan İ, Gündoğdu Y, Budak Gümgüm H, Kılıç HŞ (01 Aralık 2022) Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method. International Journal of Pure and Applied Sciences 8 2 331–341.
IEEE Ü. Yalçın Erbastı, İ. Candan, Y. Gündoğdu, H. Budak Gümgüm, ve H. Ş. Kılıç, “Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method”, International Journal of Pure and Applied Sciences, c. 8, sy. 2, ss. 331–341, 2022, doi: 10.29132/ijpas.1092339.
ISNAD Yalçın Erbastı, Ülker vd. “Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method”. International Journal of Pure and Applied Sciences 8/2 (Aralık 2022), 331-341. https://doi.org/10.29132/ijpas.1092339.
JAMA Yalçın Erbastı Ü, Candan İ, Gündoğdu Y, Budak Gümgüm H, Kılıç HŞ. Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method. International Journal of Pure and Applied Sciences. 2022;8:331–341.
MLA Yalçın Erbastı, Ülker vd. “Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method”. International Journal of Pure and Applied Sciences, c. 8, sy. 2, 2022, ss. 331-4, doi:10.29132/ijpas.1092339.
Vancouver Yalçın Erbastı Ü, Candan İ, Gündoğdu Y, Budak Gümgüm H, Kılıç HŞ. Investigation of PAN:Hemp Stems Nanofibers Produced by Electrospinning Method. International Journal of Pure and Applied Sciences. 2022;8(2):331-4.

154501544915448154471544615445