Derleme
BibTex RIS Kaynak Göster

Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi

Yıl 2020, , 237 - 247, 31.12.2020
https://doi.org/10.29132/ijpas.796186

Öz

Nükleer emülsiyon, parçacık fiziği deneylerinde kullanılan önemli bir parçacık algıcıdır. Bu tekniğin kullanımı 1900’lü yıllarda başlamış ve günümüze kadar ilerleyerek gelmiştir. Nükleer emülsiyon, sahip olduğu yüksek uzaysal çözünürlüğü sayesinde yüklü parçacıkların izlerinin takip edilmesini kolaylaştırmaktadır. Ayrıca üç boyutlu etkileşimlerin görüntülerini yeniden oluşturma, hatta enerji ve momentum ölçümlerinin yapımına da olanak sağlamaktadır. Bu özellikleri nedeniyle teorik ve deneysel parçacık fiziğine önemli katkılar getirmektedir. Günümüzde nükleer emülsiyon tekniği halen çeşitli araştırmalarda geliştirilerek kullanılmaktadır. Tasarlanan yeni deneylerde nükleer emülsiyonlar hızlandırıcılarda oluşturulan parçacık demeti önüne yerleştirilerek elde edilen verilerden atom altı parçacıklar, birbirleriyle olan ilişkileri, etkileşimleri ve karakteristik özellikleri belirlenmeye çalışılmaktadır. Bu amaçla gerçekleştirilen deneyler arasında CHORUS, DONUT, PEANUT ve OPERA deneyleri bulunmaktadır. Nötrinonun doğasını anlamak üzere tasarlanan bu deneylerde nükleer emülsiyon teknolojisi başarıyla kullanılmış ve henüz tasarım aşamasına olan SHIP deneyinde de yine nükleer emülsiyon teknolojisinin kullanılması planlanmaktadır. Bu çalışmada parçacık fiziğinde yaygın kullanımı ve büyük önemi olan nükleer emülsiyon teknolojisinin gelişim aşamaları, kullanılan materyal ve yöntemler modern nötrino deneyleri ışığında incelenmiştir. Önümüzdeki yıllarda nükleer emülsiyon teknolojisinin giderek gelişeceği, yeni nesil deneylere ve araştırmalara yön vererek parçacık fiziğinde önemli sonuçlara ulaşılması beklenmektedir.

Kaynakça

  • Acquafredda, R., Adam, T., Agafonova N., vd. 2009. The OPERA experiment in the CERN to Gran Sasso neutrino beam, Journal of Instrumentation, vol. 4.
  • Agafonova, N., vd. 2018. (OPERAColl.) Final results of the OPERA Experiment on ν_τ Appearance in the CNGS Neutrino Beam, PHYS.Rev.Lett. 120,21:211801.
  • Agafonova, N., vd. 2019. (OPERAColl.) Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam,Physical Review D,100:051301.
  • Agafonova, N., vd. 2013. (OPERAColl.) New results on -> appearance with the OPERA experiment in the CNGS beam, Journal of High Energy Physics, 36 (11).
  • Aoki, S., vd., 2010. Measurement of low-energy neutrino cross-sections with the PEANUT experiment, New Journal of Physics 12,113028.
  • Arora, C.L.S. 2013. Chand'S Success Guide R/C B.Sc Physics Vol -3, S. Chand Publishing, 2013.
  • Brown, R., Camerini, U., Fowler, PH., Muirhead, H., Powell, CF., Ritson, D.M. 1949. Observation with electron-sensitive plates exposed to cosmic radiation, Nature,163:82–87.
  • Eskut, E., vd. 2008.(CHORUS Coll) Final results on ν_µ ->ν_τoscillation from the CHORUS experiment, Nuclear Physics B 793 : 326-343.
  • Eskut, E., vd. 1997.(CHORUS Coll) The CHORUS experiment to search for -> oscillation, Nuclear Instruments and Methods ın Physics Research A, 401:7-44.
  • Ereditato, A. 2013. The Study of Neutrino Oscillations with Emulsion Detectors, Advances in High Energy Physics, 4047:1-17.
  • Herz, A.J., Lock, W.O. 1966. The Particle Detectors 1. Nuclear Emulsions. CERN Courier 6, 83-87.
  • Kamışcıoğlu, Ç. 2017. OPERA Dedektöründeki Nötrino-Kurşun Yüklü Akım Etkileşmelerinde Hadron Çokluk Dağılımlarının İncelenmesi, Doktora tezi Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Kaplon, M., Peters, B., Ritson, D.M. 1952. Emulsion Cloud-Chamber Study of a High Energy Interaction in the Cosmic Radiation, Physical Review, 85(5).
  • Karmioka, E., vd. 2000. First Results obtained by RUNJOB campaign, Advances in Space Research, 26 (11):1839-1845.
  • Kinoshita, S. 1910. The Photographic Action of the $ \alpha $-Particles Emitted from Radio-Active Substances, Proc. R. Soc. Lond. A 1910 83, 432-453.
  • Kinoshita, S., Ikeuti, H. 1915.The tracks of the α particles in sensitive photographic films, Philosophical Magazine Series 6, 29(171): 420-425.
  • Kodama, K., vd. 2008. Final tau-neutrino results from the DONuT experiment. Physical Review D 78, 052002.
  • Kodama, K., vd. 2002. Detection and analysis of tau–neutrino interactions in DONUT emulsion target. Nuclear Instruments and Methods in Physics Research A, 493:45–66.
  • Konovalova, N. 2019. Emulsion detector for future experiment SHiP at CERN.Perspectives in Science (on behalf of the SHiP Collaboration)12, 100401.
  • Kopp, S.E. 2005. The NuMI Neutrino Beam at Fermilab, AIP Conference Proceedings 773, 276.
  • Latters, C.M.G., Occhialini, G.P.S., Powell, C.F. 1947. Observation on the tracks of slow mesons in photographis- emulsions. Nature,160.
  • Lellis, G. De., Ereditato, A., Niwa, K. 2011. Nuclear Emulsions. Elementary Particles · Detectors for Particles and Radiation. Part 1: Principles and Methods. Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms. 21B1.
  • Morishima, K. 2015. Latest Developments in Nuclear Emulsion Technology. 26th International Conference on Nuclear Tracks in Solids, 26ICNTS, Physics Procedia 80:19 – 24.
  • Morishima, K. vd. 2017. Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons. Nature 552, 386–390.
  • Prowse, D.J., Baldo-Ceolin, M. 1958. Anti-lambda hyperon. Phys. Rev. Lett. 1:179–181.
  • Rayner-Canham, M.F., Rayner-Canham, GW. 1997. Devotion to Their Science: Pioneer Women of Radioactivity,McGill-Queen's Press - MQUP, 1997.
  • Rokujo, H., Kawahara, H., Komatani, R., Morishita, M., Nakano, T., Otsuka, N., Yoshimoto, M. 2016. Latest nuclear emulsion technology. EPJ Web of Conferences 145, 19020.
  • Russo, A. 2010. The PEANUT experiment in the NuMI beam at Fermilab. AIP Conference Proceedings 1222, 131.
  • Serio, M De., Ievaa, M., Simone, S., vd. 2003. Momentum measurement by the angular method in the Emulsion Cloud Chamber, Nuclear Instruments and Methods in Physics Research Section A, 512, 3:539–545.
  • Sun, H., Zhang, D. 2008. Nuclear emulsion and high-energy physics, Radiation Measurements, 43:139–143.
  • Takashi, S., vd. 2015. GRAINE project: The first balloon-borne, emulsion gamma-ray telescope experiment. Progress of Theoretical Physics. 4, 043H01.
  • Takahashi, Y., Dake, S. 1987. Cosmic ray results from the JACEE Experiments, Nuclear Physics A, 461:263-278.
  • Vyer, B. 1997. Prompt ντ background in wide band νμ beams. Nuclear Instruments and Methods in Physics Research SectionA:Accelerators, Spectrometers, Detectors and Associated Equipment. Volume 385, Issue 1, 11 January 1997, Pages 91-99.

Nuclear Emulsion Technology in Modern Neutrino Experiments

Yıl 2020, , 237 - 247, 31.12.2020
https://doi.org/10.29132/ijpas.796186

Öz

Nuclear emulsion is an important particle detector, used in particle physics experiments. The use of this technique began in the 1900s and developed up to day. Because of its high spatial resolution, the nuclear emulsion makes it easy to follow the tracks of charged particles. Also allows to reconstruct images of three-dimensional interactions and even to make energy and momentum measurements. Because of these features, it brings important contributions to theoretical and experimental particle physics. Today, nuclear emulsion technique is still being developed and used. In the new designed experiments, nuclear emulsions are placed in front of the beam of particles created in accelerators, and it is aimed to clarify the relations, interactions and characteristic features of subatomic particles. For this purpose, the CHORUS, DONUT, PEANUT and OPERA experiments were carried out to understand the nature of the neutrino particle. The nuclear emulsion technology has been used successfully applied in these experiments and the SHIP experiment, which is still in the design phase, nuclear emulsion technology will be used. In this study, the development stages of nuclear emulsion technology, which are widely used in particle physics, the materials and methods used are examined in the light of modern neutrino experiments. In the coming years, it is expected that nuclear emulsion technology will gradually develop and important results will be achieved in particle physics by directing new generation experiments and researches.

Kaynakça

  • Acquafredda, R., Adam, T., Agafonova N., vd. 2009. The OPERA experiment in the CERN to Gran Sasso neutrino beam, Journal of Instrumentation, vol. 4.
  • Agafonova, N., vd. 2018. (OPERAColl.) Final results of the OPERA Experiment on ν_τ Appearance in the CNGS Neutrino Beam, PHYS.Rev.Lett. 120,21:211801.
  • Agafonova, N., vd. 2019. (OPERAColl.) Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam,Physical Review D,100:051301.
  • Agafonova, N., vd. 2013. (OPERAColl.) New results on -> appearance with the OPERA experiment in the CNGS beam, Journal of High Energy Physics, 36 (11).
  • Aoki, S., vd., 2010. Measurement of low-energy neutrino cross-sections with the PEANUT experiment, New Journal of Physics 12,113028.
  • Arora, C.L.S. 2013. Chand'S Success Guide R/C B.Sc Physics Vol -3, S. Chand Publishing, 2013.
  • Brown, R., Camerini, U., Fowler, PH., Muirhead, H., Powell, CF., Ritson, D.M. 1949. Observation with electron-sensitive plates exposed to cosmic radiation, Nature,163:82–87.
  • Eskut, E., vd. 2008.(CHORUS Coll) Final results on ν_µ ->ν_τoscillation from the CHORUS experiment, Nuclear Physics B 793 : 326-343.
  • Eskut, E., vd. 1997.(CHORUS Coll) The CHORUS experiment to search for -> oscillation, Nuclear Instruments and Methods ın Physics Research A, 401:7-44.
  • Ereditato, A. 2013. The Study of Neutrino Oscillations with Emulsion Detectors, Advances in High Energy Physics, 4047:1-17.
  • Herz, A.J., Lock, W.O. 1966. The Particle Detectors 1. Nuclear Emulsions. CERN Courier 6, 83-87.
  • Kamışcıoğlu, Ç. 2017. OPERA Dedektöründeki Nötrino-Kurşun Yüklü Akım Etkileşmelerinde Hadron Çokluk Dağılımlarının İncelenmesi, Doktora tezi Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Kaplon, M., Peters, B., Ritson, D.M. 1952. Emulsion Cloud-Chamber Study of a High Energy Interaction in the Cosmic Radiation, Physical Review, 85(5).
  • Karmioka, E., vd. 2000. First Results obtained by RUNJOB campaign, Advances in Space Research, 26 (11):1839-1845.
  • Kinoshita, S. 1910. The Photographic Action of the $ \alpha $-Particles Emitted from Radio-Active Substances, Proc. R. Soc. Lond. A 1910 83, 432-453.
  • Kinoshita, S., Ikeuti, H. 1915.The tracks of the α particles in sensitive photographic films, Philosophical Magazine Series 6, 29(171): 420-425.
  • Kodama, K., vd. 2008. Final tau-neutrino results from the DONuT experiment. Physical Review D 78, 052002.
  • Kodama, K., vd. 2002. Detection and analysis of tau–neutrino interactions in DONUT emulsion target. Nuclear Instruments and Methods in Physics Research A, 493:45–66.
  • Konovalova, N. 2019. Emulsion detector for future experiment SHiP at CERN.Perspectives in Science (on behalf of the SHiP Collaboration)12, 100401.
  • Kopp, S.E. 2005. The NuMI Neutrino Beam at Fermilab, AIP Conference Proceedings 773, 276.
  • Latters, C.M.G., Occhialini, G.P.S., Powell, C.F. 1947. Observation on the tracks of slow mesons in photographis- emulsions. Nature,160.
  • Lellis, G. De., Ereditato, A., Niwa, K. 2011. Nuclear Emulsions. Elementary Particles · Detectors for Particles and Radiation. Part 1: Principles and Methods. Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms. 21B1.
  • Morishima, K. 2015. Latest Developments in Nuclear Emulsion Technology. 26th International Conference on Nuclear Tracks in Solids, 26ICNTS, Physics Procedia 80:19 – 24.
  • Morishima, K. vd. 2017. Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons. Nature 552, 386–390.
  • Prowse, D.J., Baldo-Ceolin, M. 1958. Anti-lambda hyperon. Phys. Rev. Lett. 1:179–181.
  • Rayner-Canham, M.F., Rayner-Canham, GW. 1997. Devotion to Their Science: Pioneer Women of Radioactivity,McGill-Queen's Press - MQUP, 1997.
  • Rokujo, H., Kawahara, H., Komatani, R., Morishita, M., Nakano, T., Otsuka, N., Yoshimoto, M. 2016. Latest nuclear emulsion technology. EPJ Web of Conferences 145, 19020.
  • Russo, A. 2010. The PEANUT experiment in the NuMI beam at Fermilab. AIP Conference Proceedings 1222, 131.
  • Serio, M De., Ievaa, M., Simone, S., vd. 2003. Momentum measurement by the angular method in the Emulsion Cloud Chamber, Nuclear Instruments and Methods in Physics Research Section A, 512, 3:539–545.
  • Sun, H., Zhang, D. 2008. Nuclear emulsion and high-energy physics, Radiation Measurements, 43:139–143.
  • Takashi, S., vd. 2015. GRAINE project: The first balloon-borne, emulsion gamma-ray telescope experiment. Progress of Theoretical Physics. 4, 043H01.
  • Takahashi, Y., Dake, S. 1987. Cosmic ray results from the JACEE Experiments, Nuclear Physics A, 461:263-278.
  • Vyer, B. 1997. Prompt ντ background in wide band νμ beams. Nuclear Instruments and Methods in Physics Research SectionA:Accelerators, Spectrometers, Detectors and Associated Equipment. Volume 385, Issue 1, 11 January 1997, Pages 91-99.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çağın Kamışcıoğlu 0000-0003-2610-6447

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 17 Eylül 2020
Kabul Tarihi 28 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kamışcıoğlu, Ç. (2020). Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi. International Journal of Pure and Applied Sciences, 6(2), 237-247. https://doi.org/10.29132/ijpas.796186
AMA Kamışcıoğlu Ç. Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi. International Journal of Pure and Applied Sciences. Aralık 2020;6(2):237-247. doi:10.29132/ijpas.796186
Chicago Kamışcıoğlu, Çağın. “Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi”. International Journal of Pure and Applied Sciences 6, sy. 2 (Aralık 2020): 237-47. https://doi.org/10.29132/ijpas.796186.
EndNote Kamışcıoğlu Ç (01 Aralık 2020) Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi. International Journal of Pure and Applied Sciences 6 2 237–247.
IEEE Ç. Kamışcıoğlu, “Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi”, International Journal of Pure and Applied Sciences, c. 6, sy. 2, ss. 237–247, 2020, doi: 10.29132/ijpas.796186.
ISNAD Kamışcıoğlu, Çağın. “Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi”. International Journal of Pure and Applied Sciences 6/2 (Aralık 2020), 237-247. https://doi.org/10.29132/ijpas.796186.
JAMA Kamışcıoğlu Ç. Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi. International Journal of Pure and Applied Sciences. 2020;6:237–247.
MLA Kamışcıoğlu, Çağın. “Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi”. International Journal of Pure and Applied Sciences, c. 6, sy. 2, 2020, ss. 237-4, doi:10.29132/ijpas.796186.
Vancouver Kamışcıoğlu Ç. Modern Nötrino Deneylerinde Nükleer Emülsiyon Teknolojisi. International Journal of Pure and Applied Sciences. 2020;6(2):237-4.

154501544915448154471544615445