Araştırma Makalesi
BibTex RIS Kaynak Göster

Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı

Yıl 2021, , 314 - 320, 20.07.2021
https://doi.org/10.29132/ijpas.879068

Öz

Periyodik tabloda on yedi adet nadir toprak elementi bulunur ve bunlardan on beş tanesi lantanitler grubunda yer alır. Diğer iki tanesi ise skandinyum ve itriyumdur. Bu çalışmada, hafif ve ağır olarak iki gruba ayrılan nadir toprak elementlerinden hafif grubuna dahil olan samaryum izotopunun fotonükleer reaksiyonuna ait tesir kesiti değerleri hesaplanmıştır. Hesaplamalar, farklı nükleer seviye yoğunluğu modelleri (Geri-kaydırılmış Fermi gaz modeli-BSFGM, Sabit sıcaklık modeli- CTM, Genelleştirilmiş süperakışkan modelGSM, Kollektif yarı-klasik Fermi gaz modeli-CSCFGM) kullanılarak TALYS 1.95 bilgisayar programı ile yapılmıştır. Elde edilen sonuçlar EXFOR (Uluslararası Nükleer Veri Merkezi) deneysel veri tabanından alınan deneysel veriler ile karşılaştırılmıştır. Sonuçlar incelendiğinde, kollektif yarı-klasik Fermi gaz modelinin (CSCFGM) deneysel verileri tahmin etmede ve açıklamada daha başarılı olduğu ve nadir toprak elementlerinin fotonükleer reaksiyonlarının tesir kesiti hesaplamalarında güvenle kullanılabileceği gösterilmiştir.

Kaynakça

  • Mathews, G.J., Howard, W.M. vd., (1992). R-process nucleosynthesis in the high-entropy supernova bubble. The Astrophysical Journal, 399, 656-664.
  • Rauscher, T., Heger, A., Hoffman, R.D., Woosley, S.E. (2002). Nucleosynthesis in massive starswith improved nuclear and stellar physics. The Astrophysical Journal, 576, 323-348.
  • Chen, W., Xu, B., Li, Y., (1999). Production of several neutron deficient nuclides through photonuclear reactions. Journal of University of Science and Technology of China, 02.
  • Kawano, T. vd., (2020). IAEA photonuclear data library 2019. Nuclear Data Sheets, 163,109-162.
  • Koning, A.J., Hilaire, S., Duijvestijn, M.C., (2019). Talys 1.95 A nuclear reaction program. http://www.talys.eu/ Exfor, Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). (http://www.nndc.bnl.gov/exfor/)
  • Filipescu, D.M. vd., (2014). Photoneutron cross sections for samarium isotopes: Toward a unified understanding of ( ) and reactions in the rare earth region. Physical Review C, 90, 064616.
  • Florez, R., Colorado, H.A., Giraldo, C.H., Alajo, A., (2018). Preparation of characterization of Portland cement pastes with Sm203 microparticle additions for neutron shielding applications. Construction and Building Materials, 191, 498-506.
  • Kaplan, A., Özdoğan, H., Aydin, A., ve Tel, E. (2014). Photo-neutron cross-section calculations of 142,143,144,145,146,150 Nd rare-earth isotopes for (γ, n) reaction. Physics of Atomic Nuclei, 77(11), 1371-1377.
  • Aydin, A., Pekdogan, H., Kaplan, A., Sarpün, İ. H., Tel, E., ve Demir, B. (2015). Comparison of level density models for the 60, 61, 62, 64 Ni (p, n) reactions of structural fusion material nickel from threshold to 30 MeV. Journal of Fusion Energy, 34(5), 1105-1108.
  • Kaplan, A., Sarpün, İ. H., Aydın, A., Tel, E., Çapalı, V., & Özdoǧan, H. (2015). (γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models. Physics of Atomic Nuclei, 78(1), 53-64.
  • Vagena, E., ve Stoulos, S. (2017). Average cross section measurement for 162Er (γ, n) reaction compared with theoretical calculations using TALYS. Nuclear Physics A, 957, 259-273.
  • Özdoğan, H., Şekerci, M., Sarpün, İ. H., ve Kaplan, A. (2018). Investigation of level density parameter effects on (p, n) and (p, 2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Applied Radiation and Isotopes, 140, 29-34.
  • Yiğit, M. (2018). A review of (n, p) and (n, α) nuclear cross sections on palladium nuclei using different level density models and empirical formulas. Applied Radiation and Isotopes, 140, 355-362.
  • Artun, O. (2018). Calculation of productions of PET radioisotopes via phenomenological level density models. Radiation Physics and Chemistry, 149, 73-83.
  • Artun, O. (2019). Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Applied Radiation and Isotopes, 144, 64-79.
  • Sarpün, İ. H., Özdoğan, H., Taşdöven, K., Yalim, H. A., ve Kaplan, A. (2019). Theoretical photoneutron cross-section calculations on Osmium isotopes by Talys and Empire codes. Modern Physics Letters A, 34(26), 1950210.
  • Şekerci, M., Özdoğan, H., ve Kaplan, A. (2019). Investigation on the Different Production Routes of 67 Ga Radioisotope by Using Different Level Density Models. Moscow University Physics Bulletin, 74(3), 277-281. Özdoğan, H., Şekerci, M., ve Kaplan, A. (2020). Photo-neutron cross-section calculations of 54, 56Fe, 90, 91, 92, 94Zr, 93Nb and 107Ag Isotopes with newly obtained Giant Dipole Resonance parameters. Applied Radiation and Isotopes, 165, 109356.
  • Dilg, W. vd., (1973). Level density parameters for the back-shifted fermi gas model in the mass range 40<A<250. Nuclear Physics Section A, 217, 269,298.
  • Grossjean, M.K., ve Feldmeier, H., (1985). Level density of a Fermi gas with pairing interactions. Nuclear Physics A, 444, 113.
  • Gilbert, A., ve Cameron, A.G.W., (1965). A composite nuclear level density formula with shell corrections. Canadian Journal of Physics, 43, 1446-1496.
  • Ignatyuk, A.V. vd., (1993). Density of discrete levels in 116Sn. Physical Review C, 47, 1504.
  • Ignatyuk, A.V., Istekov, K.K., ve Smirenkin, G.N. (1979). Yadernaja Fizika English translation: Soviet Journal Nuclear Physics, 29(4), 875.
  • Canbula, B., vd., (2014). A Laplace like formula for the energy dependence of the nuclear level density parameter. Nuclear Physics A, 929, 54-70.
  • Canbula, B., (2017). Collective effects in deuteron induced reactions of aluminum. Nuclear Instruments an Methods Section B, 391, 73-77.
  • Canbula, B., (2020). 55Mn izotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24, 138-142.
  • Canbula, D., (2020). Cross section analysis of proton-induced nuclear reactions of thorium. Nuclear Instruments and Methods Section B, 478, 229-232.

Calculation of Photonuclear Cross Section of Light Rare Earth Element 144Sm

Yıl 2021, , 314 - 320, 20.07.2021
https://doi.org/10.29132/ijpas.879068

Öz

There are seventeen rare earth elements in the periodic table and fifteen of them are in the group of lanthanides. The other two are scandium and yttrium. In this work, cross section of photonuclear reaction of samarium isotope, which is in the light group of rare earth elements divided into two groups as light and heavy, are calculated. The calculations are performed by using different nuclear level density models (BSFGM, CTM, GSM, CSCFGM) with TALYS 1.95 computer program. The obtained results are compared with experimental data taken from EXFOR experimental data base. When the results are examined, it has been shown that collective semi-classical Fermi gas model (CSCFGM) is more successful in predicting and explaining the experimental data and can be safely used in cross section calculations of photonuclear reactions of rare earth elements.

Kaynakça

  • Mathews, G.J., Howard, W.M. vd., (1992). R-process nucleosynthesis in the high-entropy supernova bubble. The Astrophysical Journal, 399, 656-664.
  • Rauscher, T., Heger, A., Hoffman, R.D., Woosley, S.E. (2002). Nucleosynthesis in massive starswith improved nuclear and stellar physics. The Astrophysical Journal, 576, 323-348.
  • Chen, W., Xu, B., Li, Y., (1999). Production of several neutron deficient nuclides through photonuclear reactions. Journal of University of Science and Technology of China, 02.
  • Kawano, T. vd., (2020). IAEA photonuclear data library 2019. Nuclear Data Sheets, 163,109-162.
  • Koning, A.J., Hilaire, S., Duijvestijn, M.C., (2019). Talys 1.95 A nuclear reaction program. http://www.talys.eu/ Exfor, Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). (http://www.nndc.bnl.gov/exfor/)
  • Filipescu, D.M. vd., (2014). Photoneutron cross sections for samarium isotopes: Toward a unified understanding of ( ) and reactions in the rare earth region. Physical Review C, 90, 064616.
  • Florez, R., Colorado, H.A., Giraldo, C.H., Alajo, A., (2018). Preparation of characterization of Portland cement pastes with Sm203 microparticle additions for neutron shielding applications. Construction and Building Materials, 191, 498-506.
  • Kaplan, A., Özdoğan, H., Aydin, A., ve Tel, E. (2014). Photo-neutron cross-section calculations of 142,143,144,145,146,150 Nd rare-earth isotopes for (γ, n) reaction. Physics of Atomic Nuclei, 77(11), 1371-1377.
  • Aydin, A., Pekdogan, H., Kaplan, A., Sarpün, İ. H., Tel, E., ve Demir, B. (2015). Comparison of level density models for the 60, 61, 62, 64 Ni (p, n) reactions of structural fusion material nickel from threshold to 30 MeV. Journal of Fusion Energy, 34(5), 1105-1108.
  • Kaplan, A., Sarpün, İ. H., Aydın, A., Tel, E., Çapalı, V., & Özdoǧan, H. (2015). (γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models. Physics of Atomic Nuclei, 78(1), 53-64.
  • Vagena, E., ve Stoulos, S. (2017). Average cross section measurement for 162Er (γ, n) reaction compared with theoretical calculations using TALYS. Nuclear Physics A, 957, 259-273.
  • Özdoğan, H., Şekerci, M., Sarpün, İ. H., ve Kaplan, A. (2018). Investigation of level density parameter effects on (p, n) and (p, 2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Applied Radiation and Isotopes, 140, 29-34.
  • Yiğit, M. (2018). A review of (n, p) and (n, α) nuclear cross sections on palladium nuclei using different level density models and empirical formulas. Applied Radiation and Isotopes, 140, 355-362.
  • Artun, O. (2018). Calculation of productions of PET radioisotopes via phenomenological level density models. Radiation Physics and Chemistry, 149, 73-83.
  • Artun, O. (2019). Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Applied Radiation and Isotopes, 144, 64-79.
  • Sarpün, İ. H., Özdoğan, H., Taşdöven, K., Yalim, H. A., ve Kaplan, A. (2019). Theoretical photoneutron cross-section calculations on Osmium isotopes by Talys and Empire codes. Modern Physics Letters A, 34(26), 1950210.
  • Şekerci, M., Özdoğan, H., ve Kaplan, A. (2019). Investigation on the Different Production Routes of 67 Ga Radioisotope by Using Different Level Density Models. Moscow University Physics Bulletin, 74(3), 277-281. Özdoğan, H., Şekerci, M., ve Kaplan, A. (2020). Photo-neutron cross-section calculations of 54, 56Fe, 90, 91, 92, 94Zr, 93Nb and 107Ag Isotopes with newly obtained Giant Dipole Resonance parameters. Applied Radiation and Isotopes, 165, 109356.
  • Dilg, W. vd., (1973). Level density parameters for the back-shifted fermi gas model in the mass range 40<A<250. Nuclear Physics Section A, 217, 269,298.
  • Grossjean, M.K., ve Feldmeier, H., (1985). Level density of a Fermi gas with pairing interactions. Nuclear Physics A, 444, 113.
  • Gilbert, A., ve Cameron, A.G.W., (1965). A composite nuclear level density formula with shell corrections. Canadian Journal of Physics, 43, 1446-1496.
  • Ignatyuk, A.V. vd., (1993). Density of discrete levels in 116Sn. Physical Review C, 47, 1504.
  • Ignatyuk, A.V., Istekov, K.K., ve Smirenkin, G.N. (1979). Yadernaja Fizika English translation: Soviet Journal Nuclear Physics, 29(4), 875.
  • Canbula, B., vd., (2014). A Laplace like formula for the energy dependence of the nuclear level density parameter. Nuclear Physics A, 929, 54-70.
  • Canbula, B., (2017). Collective effects in deuteron induced reactions of aluminum. Nuclear Instruments an Methods Section B, 391, 73-77.
  • Canbula, B., (2020). 55Mn izotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24, 138-142.
  • Canbula, D., (2020). Cross section analysis of proton-induced nuclear reactions of thorium. Nuclear Instruments and Methods Section B, 478, 229-232.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Deniz Canbula 0000-0003-0283-2698

Yayımlanma Tarihi 20 Temmuz 2021
Gönderilme Tarihi 12 Şubat 2021
Kabul Tarihi 24 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Canbula, D. (2021). Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences, 7(2), 314-320. https://doi.org/10.29132/ijpas.879068
AMA Canbula D. Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences. Temmuz 2021;7(2):314-320. doi:10.29132/ijpas.879068
Chicago Canbula, Deniz. “Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı”. International Journal of Pure and Applied Sciences 7, sy. 2 (Temmuz 2021): 314-20. https://doi.org/10.29132/ijpas.879068.
EndNote Canbula D (01 Temmuz 2021) Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences 7 2 314–320.
IEEE D. Canbula, “Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı”, International Journal of Pure and Applied Sciences, c. 7, sy. 2, ss. 314–320, 2021, doi: 10.29132/ijpas.879068.
ISNAD Canbula, Deniz. “Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı”. International Journal of Pure and Applied Sciences 7/2 (Temmuz 2021), 314-320. https://doi.org/10.29132/ijpas.879068.
JAMA Canbula D. Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences. 2021;7:314–320.
MLA Canbula, Deniz. “Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı”. International Journal of Pure and Applied Sciences, c. 7, sy. 2, 2021, ss. 314-20, doi:10.29132/ijpas.879068.
Vancouver Canbula D. Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences. 2021;7(2):314-20.

154501544915448154471544615445