Araştırma Makalesi
BibTex RIS Kaynak Göster

CuMnO2 Filmlerini Yapısal ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi

Yıl 2022, Cilt: 8 Sayı: 2, 386 - 396, 31.12.2022
https://doi.org/10.29132/ijpas.1099982

Öz

Çalışmada, farklı tabaka kalınlıklarda mezogözenekli CuMnO2 ince filmler dönel kaplama tekniği kullanılarak cam alttaş üzerine biriktirilmiştir. Elde edilen örneklerin fiziksel özellikleri X-ışını kırınımı (XRD), taramalı elektron mikroskopu (SEM), atomik kuvvet mikroskopu (AFM) ve UV-Vis ölçüm sistemi kullanılarak incelenmiştir. XRD analizi kullanılarak örneklerin mikro yapı, stres değeri, kristal büyüklüğü ve dislokasyon yoğunluğu hesaplandı. SEM görüntüleri elde edilen örneklerin küresele benzer nanoyapıların oluştuğunu ve nanoparçacıkların sayısının kalınlığa bağlı olarak arttığı göstermektedir. SEM görüntülerinden elde edilen yüzey özellikleri AFM görüntüleri ile doğrulanmaktadır. FEI Quanta 250 FEG taramalı electron mikroskopu (SEM) ile örneklerin tabaka kalınlığı yaklaşık olarak CuMnO2(I) için 157, CuMnO2(II) için 684 ve CuMnO2 (III) için 935 nm civarında ölçülmüştür. Örneklerin enerji bant aralığı ve soğurma değerleri 300-1100 nm aralığında UV-vis cihazı kullanılarak analiz edildi. Örneklerin soğurma değeri filmin kalınlığının artışına bağlı olarak değişmiştir. Enerji bant aralığı değeri ise, kalınlığın değişimine bağlı olarak radikal bir şekilde 1.78'den 1.92 eV'ye artmıştır.

Teşekkür

Dicle Üniversitesi Bilim ve Teknoloji Uygulama ve Araştırma Merkezi'ne yardımlarından ötürü teşekkür ederiz.

Kaynakça

  • Ashlyn Kirupa, E., Moses Ezhil Raj, A. and Ravidhas, C. (2016). Ethanol sensing behaviour of CuMnO2 nanostructured thin films. Journal of Materials Science: Materials in Electronics, 27(5), 4810-4815.
  • Bahmani, F., Kazemi, S. H., Wu, Y., Liu, L., Xu, Y. and Lei, Y. (2019). CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors. Chemical Engineering Journal, 375, 121966.
  • Benreguia, N., Barnabé, A. and Trari, M. (2016). Preparation and characterization of the semiconductor CuMnO2 by sol-gel route. Materials Science in Semiconductor Processing, 56, 14-19.
  • Bessekhouad, Y., Trari, M. and Doumerc, J. P. (2003). CuMnO2, a novel hydrogen photoevolution catalyst. International journal of hydrogen energy, 28(1), 43-48.
  • Chen, H. Y. and Hsu, D. J. (2014). Characterization of crednerite-Cu1.1Mn0.9O2 films prepared using sol–gel processing. Applied surface science, 290, 161-166.
  • Chen, H. Y., Lin, Y. C. and Lee, J. S. (2015). Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing. Applied Surface Science, 338, 113-119.
  • Chi, H. Z., Zhu, H. and Gao, L. (2015). Boron-doped MnO2/carbon fiber composite electrode for supercapacitor. Journal of Alloys and Compounds, 645, 199-205.
  • Dar, M. A., Ahsanulhaq, Q., Kim, Y. S., Sohn, J. M., Kim, W. B. and Shin, H. S. (2009). Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Applied Surface Science, 255(12), 6279-6284.
  • Das, S. and Alford, T. L. (2013). Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. Journal of applied physics, 113(24), 244905.
  • Harizi, A., Sinaoui, A., Akkari, F. C. and Kanzari, M. (2016). Physical properties of Sn4Sb6S13 thin films prepared by a glancing angle deposition method. Materials Science in Semiconductor Processing, 41, 450-456.
  • Hashem, A. M., Abuzeid, H. M., Narayanan, N., Ehrenberg, H. and Julien, C. M. (2011). Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2. Materials Chemistry and Physics, 130(1-2), 33-38.
  • Hiraga, H., Fukumura, T., Ohtomo, A., Makino, T., Ohkubo, A., Kimura, H. and Kawasaki, M. (2009). Optical and magnetic properties of CuMnO2 epitaxial thin films with a delafossite-derivative structure. Applied Physics Letters, 95(3), 032109.
  • Holzwarth, U. and Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), 534-534.
  • Hou, Y., Cheng, Y., Hobson, T. and Liu, J. (2010). Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano letters, 10(7), 2727-2733.
  • Kataoka, F., Ishida, T., Nagita, K., Kumbhar, V., Yamabuki, K. and Nakayama, M. (2020). Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries. ACS Applied Energy Materials, 3(5), 4720-4726.
  • Kurt, M. and Çelik, F. (2017). Investigation of Single Crystal and Polycrystalline Forms of Copper (II) and Vanadium (II) Doped Beta Potassium Sulfate Complex by Electron Spin Resonance Technique. International Journal of Pure and Applied Sciences, 3(2), 33-39.
  • Lazau, C., Poienar, M., Orha, C., Ursu, D., Nicolaescu, M., Vajda, M. and Bandas, C. (2021). Development of a new “np” heterojunction based on TiO2 and CuMnO2 synergy materials. Materials Chemistry and Physics, 272, 124999.
  • Li, D., Li, W., Deng, Y., Wu, X., Han, N. and Chen, Y. (2016). Effective Ti doping of δ-MnO2 via anion route for highly active catalytic combustion of benzene. The Journal of Physical Chemistry C, 120(19), 10275-10282.
  • Li, L., Du, Z., Liu, S., Hao, Q., Wang, Y., Li, Q. and Wang, T. (2010). A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta, 82(5), 1637-1641.
  • Li, Y. and Xie, H. (2010). Mechanochemical-synthesized Al-doped manganese dioxides for electrochemical supercapacitors. Ionics, 16(1), 21-25.
  • Liang, S., Teng, F., Bulgan, G., Zong, R. and Zhu, Y. (2008). Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. The Journal of Physical Chemistry C, 112(14), 5307-5315.
  • Liu, D., Garcia, B. B., Zhang, Q., Guo, Q., Zhang, Y., Sepehri, S. and Cao, G. (2009). Mesoporous hydrous manganese dioxide nanowall arrays with large lithium ion energy storage capacities. Advanced Functional Materials, 19(7), 1015-1023.
  • Liu, Y., Wang, N., Yao, M., Yang, C., Hu, W. and Komarneni, S. (2017). Porous Ag-doped MnO2 thin films for supercapacitor electrodes. Journal of Porous Materials, 24(6), 1717-1723.
  • Manjunatha, S., Krishna, R. H., Thomas, T., Panigrahi, B. S. and Dharmaprakash, M. S. (2018). Moss-Burstein effect in stable, cubic ZrO2: Eu+ 3 nanophosphors derived from rapid microwave-assisted solution-combustion technique. Materials Research Bulletin, 98, 139-147.
  • Nicolaescu, M., Bandas, C., Orha, C., Şerban, V., Lazău, C. and Căprărescu, S. (2021). Fabrication of a UV Photodetector Based on n-TiO2/p-CuMnO2 Heterostructures. Coatings, 11(11), 1380.
  • Poonguzhali, R., Gobi, R., Shanmugam, N., Kumar, A. S., Viruthagiri, G. and Kannadasan, N. (2015). Enhancement in electrochemical behavior of copper doped MnO2 electrode. Materials Letters, 157, 116-122.
  • Sakai, N., Ebina, Y., Takada, K. and Sasaki, T. (2005). Electrochromic films composed of MnO2 nanosheets with controlled optical density and high coloration efficiency. Journal of the Electrochemical Society, 152(12), E384.
  • Su, X., Yu, L., Cheng, G., Zhang, H., Sun, M., Zhang, L. and Zhang, J. (2014). Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Applied energy, 134, 439-445.
  • Tanaydın, Z. B., Tanaydın, M. K., Muharrem, İ. and Demirkıran, N. (2020). Bakır ve Kadmiyumun Perlit ile Adsorpsiyonu ve Adsorpsiyon Özelliklerinin Karşılaştırılması. International Journal of Pure and Applied Sciences, 6(2), 208-218.
  • Tauc, J. (Ed.). (2012). Amorphous and liquid semiconductors. Springer Science & Business Media.
  • Wang, L., Arif, M., Duan, G., Chen, S. and Liu, X. (2017). A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles. Journal of Power Sources, 355, 53-61.
  • Wang, Y. and Zhitomirsky, I. (2011). Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors. Materials Letters, 65(12), 1759-1761.
  • Wei, P., Bieringer, M., Cranswick, L. and Petric, A. (2010). In situ high-temperature X-ray and neutron diffraction of Cu–Mn oxide phases. Journal of materials science, 45(4), 1056-1064.
  • Xiong, D., Gao, H., Deng, Y., Qi, Y., Du, Z., Zeng, X. and Li, H. (2020). Impact of Mg doping on the optical and electrical properties of p-type CuMnO2 ultrathin nanosheets. Journal of Materials Science: Materials in Electronics, 31(7), 5452-5461.
  • Yue, G. H., Yan, P. X., Yan, D., Liu, J. Z., Qu, D. M., Yang, Q. and Fan, X. Y. (2006). Synthesis of two-dimensional micron-sized single-crystalline ZnS thin nanosheets and their photoluminescence properties. Journal of crystal growth, 293(2), 428-432.
  • Yuping, D., He, M., Xiaogang, L., Shunhua, L. and Zhijiang, J. (2010). The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures. Physica B: Condensed Matter, 405(7), 1826-1831.
  • Zahan, M. and Podder, J. (2020). Role of Fe doping on structural and electrical properties of MnO2 nanostructured thin films for glucose sensing performance. Materials Science in Semiconductor Processing, 117, 105109.
  • Zhang, Y., Yao, Q. Q., Gao, H. L., Zhang, L. S., Wang, L. Z., Zhang, A. Q. and Wang, L. X. (2015). Synthesis and electrochemical performance of MnO2/BC composite as active materials for supercapacitors. Journal of analytical and applied pyrolysis, 111, 233-237.
  • Ziabari, A. A. and Ghodsi, F. E. (2011). Optoelectronic studies of sol–gel derived nanostructured CdO–ZnO composite films. Journal of Alloys and compounds, 509(35), 8748-8755.

The Effect of Layer Thickness on Structural and Optical Properties of CuMnO2 Films

Yıl 2022, Cilt: 8 Sayı: 2, 386 - 396, 31.12.2022
https://doi.org/10.29132/ijpas.1099982

Öz

In this study, mesoporous CuMnO2 thin films with different layer thicknesses were deposited on glass substrate using spin coating technique. The physical properties of the obtained samples were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis. Microstructure, interplanetary distance, crystal size and dislocation density of the samples were calculated using XRD analysis. SEM images show that spherical nanostructures of the samples are formed and the number of nanoparticles increases depending on the thickness. Surface features obtained from SEM images are confirmed by AFM images. The layer thickness of the samples was measured as 157 nm for CuMnO2(I), 684 nm for CuMnO2(II) and 935 nm for CuMnO2(III) with an FEI Quanta 250 FEG scanning electron microscope (SEM). The energy band gap and absorption values of the samples were analyzed using a UV-vis device in the range of 300-1100 nm. The absorption value of the samples changed depending on the change in the thickness of the film. The energy band gap value increased radically from 1.78 to 1.92 eV depending on the increase in thickness.

Kaynakça

  • Ashlyn Kirupa, E., Moses Ezhil Raj, A. and Ravidhas, C. (2016). Ethanol sensing behaviour of CuMnO2 nanostructured thin films. Journal of Materials Science: Materials in Electronics, 27(5), 4810-4815.
  • Bahmani, F., Kazemi, S. H., Wu, Y., Liu, L., Xu, Y. and Lei, Y. (2019). CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors. Chemical Engineering Journal, 375, 121966.
  • Benreguia, N., Barnabé, A. and Trari, M. (2016). Preparation and characterization of the semiconductor CuMnO2 by sol-gel route. Materials Science in Semiconductor Processing, 56, 14-19.
  • Bessekhouad, Y., Trari, M. and Doumerc, J. P. (2003). CuMnO2, a novel hydrogen photoevolution catalyst. International journal of hydrogen energy, 28(1), 43-48.
  • Chen, H. Y. and Hsu, D. J. (2014). Characterization of crednerite-Cu1.1Mn0.9O2 films prepared using sol–gel processing. Applied surface science, 290, 161-166.
  • Chen, H. Y., Lin, Y. C. and Lee, J. S. (2015). Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing. Applied Surface Science, 338, 113-119.
  • Chi, H. Z., Zhu, H. and Gao, L. (2015). Boron-doped MnO2/carbon fiber composite electrode for supercapacitor. Journal of Alloys and Compounds, 645, 199-205.
  • Dar, M. A., Ahsanulhaq, Q., Kim, Y. S., Sohn, J. M., Kim, W. B. and Shin, H. S. (2009). Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Applied Surface Science, 255(12), 6279-6284.
  • Das, S. and Alford, T. L. (2013). Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. Journal of applied physics, 113(24), 244905.
  • Harizi, A., Sinaoui, A., Akkari, F. C. and Kanzari, M. (2016). Physical properties of Sn4Sb6S13 thin films prepared by a glancing angle deposition method. Materials Science in Semiconductor Processing, 41, 450-456.
  • Hashem, A. M., Abuzeid, H. M., Narayanan, N., Ehrenberg, H. and Julien, C. M. (2011). Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2. Materials Chemistry and Physics, 130(1-2), 33-38.
  • Hiraga, H., Fukumura, T., Ohtomo, A., Makino, T., Ohkubo, A., Kimura, H. and Kawasaki, M. (2009). Optical and magnetic properties of CuMnO2 epitaxial thin films with a delafossite-derivative structure. Applied Physics Letters, 95(3), 032109.
  • Holzwarth, U. and Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), 534-534.
  • Hou, Y., Cheng, Y., Hobson, T. and Liu, J. (2010). Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano letters, 10(7), 2727-2733.
  • Kataoka, F., Ishida, T., Nagita, K., Kumbhar, V., Yamabuki, K. and Nakayama, M. (2020). Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries. ACS Applied Energy Materials, 3(5), 4720-4726.
  • Kurt, M. and Çelik, F. (2017). Investigation of Single Crystal and Polycrystalline Forms of Copper (II) and Vanadium (II) Doped Beta Potassium Sulfate Complex by Electron Spin Resonance Technique. International Journal of Pure and Applied Sciences, 3(2), 33-39.
  • Lazau, C., Poienar, M., Orha, C., Ursu, D., Nicolaescu, M., Vajda, M. and Bandas, C. (2021). Development of a new “np” heterojunction based on TiO2 and CuMnO2 synergy materials. Materials Chemistry and Physics, 272, 124999.
  • Li, D., Li, W., Deng, Y., Wu, X., Han, N. and Chen, Y. (2016). Effective Ti doping of δ-MnO2 via anion route for highly active catalytic combustion of benzene. The Journal of Physical Chemistry C, 120(19), 10275-10282.
  • Li, L., Du, Z., Liu, S., Hao, Q., Wang, Y., Li, Q. and Wang, T. (2010). A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta, 82(5), 1637-1641.
  • Li, Y. and Xie, H. (2010). Mechanochemical-synthesized Al-doped manganese dioxides for electrochemical supercapacitors. Ionics, 16(1), 21-25.
  • Liang, S., Teng, F., Bulgan, G., Zong, R. and Zhu, Y. (2008). Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. The Journal of Physical Chemistry C, 112(14), 5307-5315.
  • Liu, D., Garcia, B. B., Zhang, Q., Guo, Q., Zhang, Y., Sepehri, S. and Cao, G. (2009). Mesoporous hydrous manganese dioxide nanowall arrays with large lithium ion energy storage capacities. Advanced Functional Materials, 19(7), 1015-1023.
  • Liu, Y., Wang, N., Yao, M., Yang, C., Hu, W. and Komarneni, S. (2017). Porous Ag-doped MnO2 thin films for supercapacitor electrodes. Journal of Porous Materials, 24(6), 1717-1723.
  • Manjunatha, S., Krishna, R. H., Thomas, T., Panigrahi, B. S. and Dharmaprakash, M. S. (2018). Moss-Burstein effect in stable, cubic ZrO2: Eu+ 3 nanophosphors derived from rapid microwave-assisted solution-combustion technique. Materials Research Bulletin, 98, 139-147.
  • Nicolaescu, M., Bandas, C., Orha, C., Şerban, V., Lazău, C. and Căprărescu, S. (2021). Fabrication of a UV Photodetector Based on n-TiO2/p-CuMnO2 Heterostructures. Coatings, 11(11), 1380.
  • Poonguzhali, R., Gobi, R., Shanmugam, N., Kumar, A. S., Viruthagiri, G. and Kannadasan, N. (2015). Enhancement in electrochemical behavior of copper doped MnO2 electrode. Materials Letters, 157, 116-122.
  • Sakai, N., Ebina, Y., Takada, K. and Sasaki, T. (2005). Electrochromic films composed of MnO2 nanosheets with controlled optical density and high coloration efficiency. Journal of the Electrochemical Society, 152(12), E384.
  • Su, X., Yu, L., Cheng, G., Zhang, H., Sun, M., Zhang, L. and Zhang, J. (2014). Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Applied energy, 134, 439-445.
  • Tanaydın, Z. B., Tanaydın, M. K., Muharrem, İ. and Demirkıran, N. (2020). Bakır ve Kadmiyumun Perlit ile Adsorpsiyonu ve Adsorpsiyon Özelliklerinin Karşılaştırılması. International Journal of Pure and Applied Sciences, 6(2), 208-218.
  • Tauc, J. (Ed.). (2012). Amorphous and liquid semiconductors. Springer Science & Business Media.
  • Wang, L., Arif, M., Duan, G., Chen, S. and Liu, X. (2017). A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles. Journal of Power Sources, 355, 53-61.
  • Wang, Y. and Zhitomirsky, I. (2011). Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors. Materials Letters, 65(12), 1759-1761.
  • Wei, P., Bieringer, M., Cranswick, L. and Petric, A. (2010). In situ high-temperature X-ray and neutron diffraction of Cu–Mn oxide phases. Journal of materials science, 45(4), 1056-1064.
  • Xiong, D., Gao, H., Deng, Y., Qi, Y., Du, Z., Zeng, X. and Li, H. (2020). Impact of Mg doping on the optical and electrical properties of p-type CuMnO2 ultrathin nanosheets. Journal of Materials Science: Materials in Electronics, 31(7), 5452-5461.
  • Yue, G. H., Yan, P. X., Yan, D., Liu, J. Z., Qu, D. M., Yang, Q. and Fan, X. Y. (2006). Synthesis of two-dimensional micron-sized single-crystalline ZnS thin nanosheets and their photoluminescence properties. Journal of crystal growth, 293(2), 428-432.
  • Yuping, D., He, M., Xiaogang, L., Shunhua, L. and Zhijiang, J. (2010). The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures. Physica B: Condensed Matter, 405(7), 1826-1831.
  • Zahan, M. and Podder, J. (2020). Role of Fe doping on structural and electrical properties of MnO2 nanostructured thin films for glucose sensing performance. Materials Science in Semiconductor Processing, 117, 105109.
  • Zhang, Y., Yao, Q. Q., Gao, H. L., Zhang, L. S., Wang, L. Z., Zhang, A. Q. and Wang, L. X. (2015). Synthesis and electrochemical performance of MnO2/BC composite as active materials for supercapacitors. Journal of analytical and applied pyrolysis, 111, 233-237.
  • Ziabari, A. A. and Ghodsi, F. E. (2011). Optoelectronic studies of sol–gel derived nanostructured CdO–ZnO composite films. Journal of Alloys and compounds, 509(35), 8748-8755.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şilan Baturay 0000-0002-8122-6671

Canan Aytuğ Ava 0000-0003-4771-816X

Erken Görünüm Tarihi 29 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 7 Nisan 2022
Kabul Tarihi 30 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 2

Kaynak Göster

APA Baturay, Ş., & Aytuğ Ava, C. (2022). CuMnO2 Filmlerini Yapısal ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi. International Journal of Pure and Applied Sciences, 8(2), 386-396. https://doi.org/10.29132/ijpas.1099982
AMA Baturay Ş, Aytuğ Ava C. CuMnO2 Filmlerini Yapısal ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi. International Journal of Pure and Applied Sciences. Aralık 2022;8(2):386-396. doi:10.29132/ijpas.1099982
Chicago Baturay, Şilan, ve Canan Aytuğ Ava. “CuMnO2 Filmlerini Yapısal Ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi”. International Journal of Pure and Applied Sciences 8, sy. 2 (Aralık 2022): 386-96. https://doi.org/10.29132/ijpas.1099982.
EndNote Baturay Ş, Aytuğ Ava C (01 Aralık 2022) CuMnO2 Filmlerini Yapısal ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi. International Journal of Pure and Applied Sciences 8 2 386–396.
IEEE Ş. Baturay ve C. Aytuğ Ava, “CuMnO2 Filmlerini Yapısal ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi”, International Journal of Pure and Applied Sciences, c. 8, sy. 2, ss. 386–396, 2022, doi: 10.29132/ijpas.1099982.
ISNAD Baturay, Şilan - Aytuğ Ava, Canan. “CuMnO2 Filmlerini Yapısal Ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi”. International Journal of Pure and Applied Sciences 8/2 (Aralık 2022), 386-396. https://doi.org/10.29132/ijpas.1099982.
JAMA Baturay Ş, Aytuğ Ava C. CuMnO2 Filmlerini Yapısal ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi. International Journal of Pure and Applied Sciences. 2022;8:386–396.
MLA Baturay, Şilan ve Canan Aytuğ Ava. “CuMnO2 Filmlerini Yapısal Ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi”. International Journal of Pure and Applied Sciences, c. 8, sy. 2, 2022, ss. 386-9, doi:10.29132/ijpas.1099982.
Vancouver Baturay Ş, Aytuğ Ava C. CuMnO2 Filmlerini Yapısal ve Optik Özellikleri Üzerinde Tabaka Kalınlığının Etkisi. International Journal of Pure and Applied Sciences. 2022;8(2):386-9.

154501544915448154471544615445