Kuvars Çekirdekli Fiberlerde Cherenkov Fotonlarının Üretimi ve İletimi Üzerine Geant4 Simülasyon Çalışması
Yıl 2023,
Cilt: 9 Sayı: 2, 250 - 260, 31.12.2023
Orhan Aydilek
,
Suat Özkorucuklu
,
Salim Çerçi
,
Deniz Sunar Çerçi
Öz
Günümüzde kuvars çekirdekli fiberler hem iletişim hem de yüksek radyasyon dirençleri sayesinde bilimsel çalışmalarda yoğunlukla kullanılmaktadır. Fiberin kuvars çekirdeği Çerenkov fotonu üretebilme ve üretilen bu fotonları yada dışarıdan fiber içerisine giren fotonları iletebilme kabiliyeti sayesinde yüksek enerji fiziği ve nükleer fizik alanlarında dedektör tasarımlarında sıklıkla kullanılmaktadır. Bu çalışmada, kuvars çekirdekli fiberlerin foton üretimi ve iletimi üzerine Geant4 simülasyon uygulaması kullanılarak detaylı bir simülasyon geliştirilmiştir. Geant4 simülasyon ortamında Molex firmasının son dönemlerde geliştirmiş olduğu FBP(FBP600660710) geniş bant kuvars çekirdekli fiberleri kullanılmıştır. Bir kuvars çekirdekli fiber üzerine belirli çarpma açılarında ve fiber üzerindeki belirli çarpma noktalarına yüklü parçacıklar gönderilerek, fiberin Çerenkov fotonları üretimi ve iletimi incelenmiştir. Elde edilen verilere dayanarak, foton kayıplarını azaltmak amacıyla fiberin açık ucuna yansıtıcı entegre edilerek testler tekrar gerçekleştirilmiştir. Fiber uzunluğunun fiberin foton taşıma kapasitesi üzerine etkileri de incelenmiştir.
Proje Numarası
Scientific and Technological Research Council of Turkey (TUBİTAK) Project Number: 119N425
Kaynakça
- Agostinelli, S. ve ark. (2003). GEANT4–a simulation toolkit. Nucl. Instrum. Meth. A, 506, 250–303.
- Bahaa, E. A. S. veMalvin, C. T. (1991). Fundamentals of photonics, Fiber optics, 272–309.
- Béjar Alonso, I., Brüning, O., Fessia, P. ve Lamont, M. (2020). High-luminosity large hadron collider (HL-LHC) technical design report. CERN Yellow Reports: Monographs. CERN-2020-010, 378.
- Cankocak, K., Bakırcı, N.M., Cerci, S. ve ark. (2008). Radiation-hardness measurements of high OH- content quartz fibres irradiated with 24 GeV protons up to 1.25 Grad. Nuclear Instruments and Methods in Physics Research, 585, 1-2.
- Chen, W., Hu, L., Zhong, G. ve ark. (2022). Optimization study and design of scintillating fiber detector for D-T neutron measurements on EAST with Geant4. Nuclear Science and Techniques, 33, 139.
- Cherenkova, E. P. (2008). The discovery of the Cherenkov radiation. Nucl. Instrum. Meth. A, 595, 8–11.
- Geant4 Collaboration. (2023, October 10). Geant4 webpage.
- Geant4 Collaboration. (2023, October 10). Geant4 book for application developers.
- Girard, S. ve ark. (2019). Overview of radiation induced point defects in silica-based optical fibers. Reviews in Physics, 4, 100032.
- Hagopian, V. (1999). Radiation damage of quartz fibers. Nuclear Physics B, 78(1), 635–638.
- Jelley, J. V. (1955). Cherenkov radiation and its applications. British Journal of Applied Physics,
6(7), 227.
Kharzheev, Yu. N. (2019). Radiation hardness of scintillation detectors based on organic plastic scintillators and optical fibers. Physics of Particles and Nuclei, 50, 42–76.
- Malitson, I. H. (1965). Interspecimen comparison of the refractive index of fused silica. Optica Publishing Group, 55(10), 1205–1209.
- Polymicro Molex. (2023). FBP fiber technical document.
- Selivanova, D. A. ve ark. (2020). Geant4 quartz fiber simulations as part of luminometer development for CMS. J. Phys.: Conf. Ser., 1690, 012047
- Sunar Cerci, D. ve ark. (2023). Geant4 study for geometry of quartz fiber luminometer at CMS HL-LHC. Phys.Part.Nucl., 54(4), 725-728.
- Thomas, R. D. (2024). Study of radiation hardness of optical fibers. Phd Thesis, Texas Technical University, Texas, USA.
- Wandel, M. (2005). Attenuation in silica-based optical fibers. Phd Thesis, Technical University of Denmark, Denmark.
- Wolfenden, J. ve ark. (2023). Cherenkov radiation in optical fibres as a versatile machine protection system in particle accelerators. Sensors, 23(4), 4.
Study on Geant4 Simulation of Cherenkov Photons Generation and Propagation in Quartz Core Fibers
Yıl 2023,
Cilt: 9 Sayı: 2, 250 - 260, 31.12.2023
Orhan Aydilek
,
Suat Özkorucuklu
,
Salim Çerçi
,
Deniz Sunar Çerçi
Öz
In today's world, quartz-core fibers are extensively used in scientific studies due to their high radiation resistance. Thanks to the quartz core's ability to generate Cherenkov photons and propagate these photons, as well as those entering the fiber from outside, it is frequently studied in the context of high-energy and nuclear physics for detector designs. In this paper, a detailed simulation was developed using the Geant4 simulation application, focusing on the photon production and propagation capabilities of quartz-core fibers. Molex's recently developed FBP (FBP600660710) broadband quartz-core fibers were integrated in the simulation environment. The production and propagation of Cherenkov photons were tested by having a charged particle pass through a specific impact point and angle on a quartz-core fiber. Based on the obtained data, reflectors were integrated onto the open end surface of the fiber to reduce photon losses, and tests were conducted again. The effects of fiber length on the photon-carrying capacity of the fiber were also tested.
Proje Numarası
Scientific and Technological Research Council of Turkey (TUBİTAK) Project Number: 119N425
Kaynakça
- Agostinelli, S. ve ark. (2003). GEANT4–a simulation toolkit. Nucl. Instrum. Meth. A, 506, 250–303.
- Bahaa, E. A. S. veMalvin, C. T. (1991). Fundamentals of photonics, Fiber optics, 272–309.
- Béjar Alonso, I., Brüning, O., Fessia, P. ve Lamont, M. (2020). High-luminosity large hadron collider (HL-LHC) technical design report. CERN Yellow Reports: Monographs. CERN-2020-010, 378.
- Cankocak, K., Bakırcı, N.M., Cerci, S. ve ark. (2008). Radiation-hardness measurements of high OH- content quartz fibres irradiated with 24 GeV protons up to 1.25 Grad. Nuclear Instruments and Methods in Physics Research, 585, 1-2.
- Chen, W., Hu, L., Zhong, G. ve ark. (2022). Optimization study and design of scintillating fiber detector for D-T neutron measurements on EAST with Geant4. Nuclear Science and Techniques, 33, 139.
- Cherenkova, E. P. (2008). The discovery of the Cherenkov radiation. Nucl. Instrum. Meth. A, 595, 8–11.
- Geant4 Collaboration. (2023, October 10). Geant4 webpage.
- Geant4 Collaboration. (2023, October 10). Geant4 book for application developers.
- Girard, S. ve ark. (2019). Overview of radiation induced point defects in silica-based optical fibers. Reviews in Physics, 4, 100032.
- Hagopian, V. (1999). Radiation damage of quartz fibers. Nuclear Physics B, 78(1), 635–638.
- Jelley, J. V. (1955). Cherenkov radiation and its applications. British Journal of Applied Physics,
6(7), 227.
Kharzheev, Yu. N. (2019). Radiation hardness of scintillation detectors based on organic plastic scintillators and optical fibers. Physics of Particles and Nuclei, 50, 42–76.
- Malitson, I. H. (1965). Interspecimen comparison of the refractive index of fused silica. Optica Publishing Group, 55(10), 1205–1209.
- Polymicro Molex. (2023). FBP fiber technical document.
- Selivanova, D. A. ve ark. (2020). Geant4 quartz fiber simulations as part of luminometer development for CMS. J. Phys.: Conf. Ser., 1690, 012047
- Sunar Cerci, D. ve ark. (2023). Geant4 study for geometry of quartz fiber luminometer at CMS HL-LHC. Phys.Part.Nucl., 54(4), 725-728.
- Thomas, R. D. (2024). Study of radiation hardness of optical fibers. Phd Thesis, Texas Technical University, Texas, USA.
- Wandel, M. (2005). Attenuation in silica-based optical fibers. Phd Thesis, Technical University of Denmark, Denmark.
- Wolfenden, J. ve ark. (2023). Cherenkov radiation in optical fibres as a versatile machine protection system in particle accelerators. Sensors, 23(4), 4.