Araştırma Makalesi
BibTex RIS Kaynak Göster

KINETIC EVALUATION OF SOME TURKISH LIGNITES BY THERMAL ANALYSIS METHOD

Yıl 2024, Cilt: 10 Sayı: 1, 25 - 36, 30.06.2024
https://doi.org/10.29132/ijpas.1387246

Öz

In this study, Turkey's; pyrolysis properties of Malatya-Arguvan, Sivas-Kangal, Kahramanmaraş-Elbistan, and Konya-Ermenek lignites were determined by thermal analysis methods. The pyrolysis properties of the samples were determined by thermal analysis methods (DTA and TGA). DTA and TGA experiments were performed using approximately 10 mg of the sample at a flow rate of 10 ml min-1 N2 gas up to a tem-perature range of 25 to 1000°C. When the TG/DTG thermograms were examined, it was determined that there were three different regions depending on moisture loss, volatile matter release and mineral matter degradation. Arrhenius and Coats-Redfern models were used to calculate kinetic parameters. With the help of these kinetic models, Arrhenius constants and apparent activation energies were calculated. The results were evaluated comparatively. According to both kinetic models, the highest activation energy values were calculated in the 3rd region. It was determined that the Arrhenius kinetic model has the highest activation energy and R2 for Konya-Ermenek lignite. According to the Coats-Redfern kinetic model, Sivas-Kangal lignite has the highest activation energy. Weight loss was diffusion-controlled in the low tempera-ture region and chemically controlled in the higher temperature region. While the activation energies were close in the low temperature region, the energies for the higher temperature region differed significantly.

Kaynakça

  • Gör, H. (2022). Doğalgaz tüketiminin elektrik tüketimi üzerindeki etkisinin incelenmesi: Muş ili örneği. International Journal of Pure and Applied Sciences, 8(1), 195-203.
  • Acikkar, M., ve Sivrikaya, O. (2020). Yıkanmış Türk linyit kömürlerinin üst isıl değerinin destek vektör regresyonu ile tahmini. Avrupa Bilim ve Teknoloji Dergisi, (18), 16-24.
  • Aksogan Korkmaz, A., and Ozbas, K. E. (2017). Determination of pyrolysis properties of Sirnak (Avgamasya) asphaltite by thermal analysis methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(14), 1511-1517.
  • Çakal, G. Ö., Yücel, H., and Gürüz, A. G. (2007). Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 80(1), 262-268.
  • Guo, F., He, Y., Hassanpour, A., Gardy, J., and Zhong, Z. (2020). Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy, 197, 117147.
  • Hayrullahoğlu, B. (2012). Çevresel sorunlarla mücadelede karbon vergisi. Ekonomi Bilimleri Dergisi, 4(2), 1-11.
  • Burnley, S., Phillips, R., Coleman, T., and Rampling, T. (2011). Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom. Waste Ma-na-gement, 31 (9-10), 1949-1959.
  • Üçışık, Erbilen, S., ve Şahin, G. (2015). Enerji coğrafyası kapsamında Türkiye’de linyit. Doğu Coğrafya Dergisi, 20(33), 135-160.
  • Birinci, M., ve Şentürk, K. (2021). Arguvan (Malatya) linyitinden hümik asit ekstraksiyonu ve kömür yıkamanın etkisi. Journal of the Institute Of Science and Technology, 11(3), 2133-2141.
  • Prabhakaran, S. S., Swaminathan, G., and Joshi, V. V. (2022). Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks. Energy, 242, 122949.
  • Gülsaç, I. I., (2021). Thermochemical conversion behavior of Turkish lignite/poppy capsule pulp blends in N2 and CO2 atmospheres. Gazi University Journal of Science, 1-1.
  • Xu, J., Liu, X., Wu, J., and Zhang, Y. (2022). An effective method to remove organic sulfur in coal: Effects on the physicochemical properties and combustion kinetics. Environmental Progress and Sustainable Energy, 41(3),e13779.
  • Magalhaes, D., Kazanç, F., Riaza, J., Erensoy, S., Kabaklı, Ö., and Chalmers, H. (2017). Combustion of Turkish lignites and olive residue: Experiments and kinetic modelling. Fuel, 203, 868-876.
  • Xu, Y., Zhang, Y., Zhang, G., and Guo, Y. (2016). Low temperature pyrolysates distribution and kinetics of Zhaotong lignite. Energy Conversion and Management, 114, 11-19.
  • Patel, V. R., Patel, R. N., and Rao, V. J. (2013). Kinetic parameter estimation of lignite by thermo-gravimetric analysis. Procedia Engineering, 51, 727-734.
  • Kök, M., (2007). Non-isothermal DSC and TG/DTG analysis of the combustion of Silopi asp-haltites. Journal of Thermal Analysis and Calorimetry, 88(3), 663-668.
  • Kök, M. V., and Okandan, E. (1996). Kinetic analysis of DSC and thermogravimetric data on combustion of lignite. Journal of Thermal Analysis and Calorimetry, 46(6), 1657-1669.
  • Korkmaz, A. A. (2022). Determination of energy value and ash-sulfur content of clean fuel obtained from lignite carbonization at different heating rates. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 44-56.
  • Kanca, A. (2020). Investigation on pyrolysis and combustion characteristics of low quality lignite, cotton waste, and their blends by TGA-FTIR. Fuel, 263, 116517.
  • Açıkgöz, Ç., ve Balbay, Ş. (2017). Kimyasal bozundurma prosesiyle atık lastik ve düşük kaliteli linyit karışımından elde edilen katı ürünün karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 773-779.
  • Kök, M. V., and Özgür, E. (2013). Thermal analysis and kinetics of biomass samples. Fuel Processing Technology, 106, 739-743.
  • Sait, H. H., Hussain, A., Salema, A. A., and Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382-389.
  • Sebestyén, Z., Lezsovits, F., Jakab, E., and Várhegyi, G. (2012). Correlation between heating values and thermogravimetric data of sewage sludge, herbaceous crops and wood samples. Journal of Thermal Analysis and Calorimetry, 110(3), 1501-1509.
  • Gómez, C. J., Mészáros, E., Jakab, E., Velo, E., and Puigjaner, L. (2007). Thermogra-vi-metry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA tech-niques. Journal of Analytical and Applied Pyrolysis, 80(2), 416-426.
  • Kök, M. V. (2003). Coal pyrolysis: thermogravimetric study and kinetic analysis. Energy Sources, 25(10), 1007-1014.
  • Stenseng, M., Zolin, A., Cenni, R., Frandsen, F., Jensen, A., and Dam-Johansen, K. (2001). Thermal analysis in combustion research. Journal of Thermal Analysis and Calorimetry, 64(3), 1325-1334.
  • Naktiyok J., ve Özer, A. (2022). Termogravimetrık analiz ile farklı kömürlerin yanma prosesinin incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 691-701.
  • Elkhalifa, S., Parthasarathy, P., Mackey, H. R., Al-Ansari, T., Elhassan, O., Mansour, S., and McKay, G. (2022). Biochar development from thermal TGA studies of individual food waste vege-tables and their blended systems. Biomass Conversion and Biorefinery, 1-18.
  • Zhuang, C. H., Huangfu, W. H., You, F., Wang, W. D., Zhu, Y. S., and Fu, Z. L. (2023). Evolution and mechanisms of low-temperature oxidation and coal–oxygen coupling processes of a specific low-rank bituminous coal with various microscale particle sizes. International Journal of Coal Prep-aration and Utilization, 43(2), 308-328.
  • Açıkalın, K., ve Gözke, G. (2021). Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 723-736.
  • Lian, W., Wang, J., Wang, G., Gao, D., Li, X., Zhang, Z., and Hou, B. (2020). Investigation on the lignite pyrolysis reaction kinetics based on the general Arrhenius formula. Fuel, 268, 117364.
  • Yurdakul, S., Gürel, B., Varol, M., Gürbüz, H., and Kurtuluş, K. (2021). Investigation on thermal degradation kinetics and mechanisms of chicken manure, lignite, and their blends by TGA. Environ-mental Science and Pollution Research, 1-11.
  • Aksogan Korkmaz, A., ve Toptaş, Y. (2023). Parçikan bitümlü şeylinin termal analiz kinetiği ve reaksiyon mekanizması. Karadeniz Fen Bilimleri Dergisi, 13(4), 1648-1660.
  • Yoğurtçu, H. (2016). Investigation of drying characteristics of parboiled wheat kernel in a ha-logen lamp dryer and its modelling. International Journal of Pure and Applied Sciences, 2(1), 34-39.
  • Yan, J., Liu, M., Feng, Z., Bai, Z., Shui, H., Li, Z., and Yan, H. (2020). Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model. Fuel, 261, 116359.
  • De Filippis, P., De Caprariis, B., Scarsella, M., and Verdone, N. (2015). Double distribution activation energy model as suitable tool in explaining biomass and coal pyrolysis behavior. Energies, 8(3), 1730-1744.
  • Xu, Y., Zhang, Y., Zhang, G., Guo, Y., Zhang, J., and Li, G. (2015). Pyrolysis characteristics and kinetics of two Chinese low-rank coals. Journal of Thermal Analysis and Calorimetry, 122, 975-984.
  • Liu, J., Ma, J., Luo, L., Zhang, H., and Jiang, X. (2017). Pyrolysis of superfine pulverized coal. Thermogravimetric analysis. Energy Conversion and Management, 154, 491-502.

BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ

Yıl 2024, Cilt: 10 Sayı: 1, 25 - 36, 30.06.2024
https://doi.org/10.29132/ijpas.1387246

Öz

Bu çalışmada Türkiye’nin; Malatya-Arguvan, Sivas-Kangal, Kahramanmaraş-Elbistan ve Konya-Ermenek linyitlerinin piroliz özellikleri termal analiz yöntemleri ile belirlenmiştir. DTA ve TGA deneyleri, 25 ile 1000°C sıcaklık aralığına kadar, 10 ml dk-1 N2 gazı akış hızında, yaklaşık 10 mg numune kullanılarak gerçekleştirilmiştir. TG/DTG termogramları incelendiğinde nem kaybı, uçucu madde çıkışı ve mineral madde bozunmasına bağlı olarak üç farklı bölge olduğu belir-lenmiştir. Kinetik parametreleri hesaplamak için Arrhenius ve Coats-Redfern mod-elleri kullanılmıştır. Kullanılan bu kinetik modeller yardımıyla Arrhenius sabitleri ve görünür aktivasyon enerjileri hesaplanmıştır. Sonuçlar karşılaştırmalı olarak değer-lendirilmiştir. Her iki kinetik modele göre de en yüksek aktivasyon enerjisi değerleri 3. bölgede hesaplanmıştır. Arrhenius kinetik modeline göre, Konya-Ermenek linyit-inin en yüksek aktivasyon enerjisi ve R2’ye, Coats-Redfern kinetik modeline göre ise, Sivas-Kangal linyitinin en yüksek aktivasyon enerjisine sahip olduğu belirlenmiştir. Ağırlık kaybı, düşük sıcaklık bölgesinde difüzyon kontrollü, daha yüksek sıcaklık bölgesinde ise kimyasal olarak kontrol edilmiştir. Düşük sıcaklık bölgesinde akti-vasyon enerjileri yakınken, daha yüksek sıcaklık bölgesi için enerjiler önemli ölçüde farklılık göstermiştir.

Kaynakça

  • Gör, H. (2022). Doğalgaz tüketiminin elektrik tüketimi üzerindeki etkisinin incelenmesi: Muş ili örneği. International Journal of Pure and Applied Sciences, 8(1), 195-203.
  • Acikkar, M., ve Sivrikaya, O. (2020). Yıkanmış Türk linyit kömürlerinin üst isıl değerinin destek vektör regresyonu ile tahmini. Avrupa Bilim ve Teknoloji Dergisi, (18), 16-24.
  • Aksogan Korkmaz, A., and Ozbas, K. E. (2017). Determination of pyrolysis properties of Sirnak (Avgamasya) asphaltite by thermal analysis methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(14), 1511-1517.
  • Çakal, G. Ö., Yücel, H., and Gürüz, A. G. (2007). Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 80(1), 262-268.
  • Guo, F., He, Y., Hassanpour, A., Gardy, J., and Zhong, Z. (2020). Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy, 197, 117147.
  • Hayrullahoğlu, B. (2012). Çevresel sorunlarla mücadelede karbon vergisi. Ekonomi Bilimleri Dergisi, 4(2), 1-11.
  • Burnley, S., Phillips, R., Coleman, T., and Rampling, T. (2011). Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom. Waste Ma-na-gement, 31 (9-10), 1949-1959.
  • Üçışık, Erbilen, S., ve Şahin, G. (2015). Enerji coğrafyası kapsamında Türkiye’de linyit. Doğu Coğrafya Dergisi, 20(33), 135-160.
  • Birinci, M., ve Şentürk, K. (2021). Arguvan (Malatya) linyitinden hümik asit ekstraksiyonu ve kömür yıkamanın etkisi. Journal of the Institute Of Science and Technology, 11(3), 2133-2141.
  • Prabhakaran, S. S., Swaminathan, G., and Joshi, V. V. (2022). Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks. Energy, 242, 122949.
  • Gülsaç, I. I., (2021). Thermochemical conversion behavior of Turkish lignite/poppy capsule pulp blends in N2 and CO2 atmospheres. Gazi University Journal of Science, 1-1.
  • Xu, J., Liu, X., Wu, J., and Zhang, Y. (2022). An effective method to remove organic sulfur in coal: Effects on the physicochemical properties and combustion kinetics. Environmental Progress and Sustainable Energy, 41(3),e13779.
  • Magalhaes, D., Kazanç, F., Riaza, J., Erensoy, S., Kabaklı, Ö., and Chalmers, H. (2017). Combustion of Turkish lignites and olive residue: Experiments and kinetic modelling. Fuel, 203, 868-876.
  • Xu, Y., Zhang, Y., Zhang, G., and Guo, Y. (2016). Low temperature pyrolysates distribution and kinetics of Zhaotong lignite. Energy Conversion and Management, 114, 11-19.
  • Patel, V. R., Patel, R. N., and Rao, V. J. (2013). Kinetic parameter estimation of lignite by thermo-gravimetric analysis. Procedia Engineering, 51, 727-734.
  • Kök, M., (2007). Non-isothermal DSC and TG/DTG analysis of the combustion of Silopi asp-haltites. Journal of Thermal Analysis and Calorimetry, 88(3), 663-668.
  • Kök, M. V., and Okandan, E. (1996). Kinetic analysis of DSC and thermogravimetric data on combustion of lignite. Journal of Thermal Analysis and Calorimetry, 46(6), 1657-1669.
  • Korkmaz, A. A. (2022). Determination of energy value and ash-sulfur content of clean fuel obtained from lignite carbonization at different heating rates. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 44-56.
  • Kanca, A. (2020). Investigation on pyrolysis and combustion characteristics of low quality lignite, cotton waste, and their blends by TGA-FTIR. Fuel, 263, 116517.
  • Açıkgöz, Ç., ve Balbay, Ş. (2017). Kimyasal bozundurma prosesiyle atık lastik ve düşük kaliteli linyit karışımından elde edilen katı ürünün karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 773-779.
  • Kök, M. V., and Özgür, E. (2013). Thermal analysis and kinetics of biomass samples. Fuel Processing Technology, 106, 739-743.
  • Sait, H. H., Hussain, A., Salema, A. A., and Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382-389.
  • Sebestyén, Z., Lezsovits, F., Jakab, E., and Várhegyi, G. (2012). Correlation between heating values and thermogravimetric data of sewage sludge, herbaceous crops and wood samples. Journal of Thermal Analysis and Calorimetry, 110(3), 1501-1509.
  • Gómez, C. J., Mészáros, E., Jakab, E., Velo, E., and Puigjaner, L. (2007). Thermogra-vi-metry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA tech-niques. Journal of Analytical and Applied Pyrolysis, 80(2), 416-426.
  • Kök, M. V. (2003). Coal pyrolysis: thermogravimetric study and kinetic analysis. Energy Sources, 25(10), 1007-1014.
  • Stenseng, M., Zolin, A., Cenni, R., Frandsen, F., Jensen, A., and Dam-Johansen, K. (2001). Thermal analysis in combustion research. Journal of Thermal Analysis and Calorimetry, 64(3), 1325-1334.
  • Naktiyok J., ve Özer, A. (2022). Termogravimetrık analiz ile farklı kömürlerin yanma prosesinin incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 691-701.
  • Elkhalifa, S., Parthasarathy, P., Mackey, H. R., Al-Ansari, T., Elhassan, O., Mansour, S., and McKay, G. (2022). Biochar development from thermal TGA studies of individual food waste vege-tables and their blended systems. Biomass Conversion and Biorefinery, 1-18.
  • Zhuang, C. H., Huangfu, W. H., You, F., Wang, W. D., Zhu, Y. S., and Fu, Z. L. (2023). Evolution and mechanisms of low-temperature oxidation and coal–oxygen coupling processes of a specific low-rank bituminous coal with various microscale particle sizes. International Journal of Coal Prep-aration and Utilization, 43(2), 308-328.
  • Açıkalın, K., ve Gözke, G. (2021). Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 723-736.
  • Lian, W., Wang, J., Wang, G., Gao, D., Li, X., Zhang, Z., and Hou, B. (2020). Investigation on the lignite pyrolysis reaction kinetics based on the general Arrhenius formula. Fuel, 268, 117364.
  • Yurdakul, S., Gürel, B., Varol, M., Gürbüz, H., and Kurtuluş, K. (2021). Investigation on thermal degradation kinetics and mechanisms of chicken manure, lignite, and their blends by TGA. Environ-mental Science and Pollution Research, 1-11.
  • Aksogan Korkmaz, A., ve Toptaş, Y. (2023). Parçikan bitümlü şeylinin termal analiz kinetiği ve reaksiyon mekanizması. Karadeniz Fen Bilimleri Dergisi, 13(4), 1648-1660.
  • Yoğurtçu, H. (2016). Investigation of drying characteristics of parboiled wheat kernel in a ha-logen lamp dryer and its modelling. International Journal of Pure and Applied Sciences, 2(1), 34-39.
  • Yan, J., Liu, M., Feng, Z., Bai, Z., Shui, H., Li, Z., and Yan, H. (2020). Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model. Fuel, 261, 116359.
  • De Filippis, P., De Caprariis, B., Scarsella, M., and Verdone, N. (2015). Double distribution activation energy model as suitable tool in explaining biomass and coal pyrolysis behavior. Energies, 8(3), 1730-1744.
  • Xu, Y., Zhang, Y., Zhang, G., Guo, Y., Zhang, J., and Li, G. (2015). Pyrolysis characteristics and kinetics of two Chinese low-rank coals. Journal of Thermal Analysis and Calorimetry, 122, 975-984.
  • Liu, J., Ma, J., Luo, L., Zhang, H., and Jiang, X. (2017). Pyrolysis of superfine pulverized coal. Thermogravimetric analysis. Energy Conversion and Management, 154, 491-502.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji ve Yakmada Kimyasal ve Termal Süreçler
Bölüm Makaleler
Yazarlar

Yeliz Toptaş 0000-0002-0703-7055

Aydan Aksoğan Korkmaz 0000-0002-3309-9719

Erken Görünüm Tarihi 28 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 7 Kasım 2023
Kabul Tarihi 17 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APA Toptaş, Y., & Aksoğan Korkmaz, A. (2024). BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ. International Journal of Pure and Applied Sciences, 10(1), 25-36. https://doi.org/10.29132/ijpas.1387246
AMA Toptaş Y, Aksoğan Korkmaz A. BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ. International Journal of Pure and Applied Sciences. Haziran 2024;10(1):25-36. doi:10.29132/ijpas.1387246
Chicago Toptaş, Yeliz, ve Aydan Aksoğan Korkmaz. “BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ”. International Journal of Pure and Applied Sciences 10, sy. 1 (Haziran 2024): 25-36. https://doi.org/10.29132/ijpas.1387246.
EndNote Toptaş Y, Aksoğan Korkmaz A (01 Haziran 2024) BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ. International Journal of Pure and Applied Sciences 10 1 25–36.
IEEE Y. Toptaş ve A. Aksoğan Korkmaz, “BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ”, International Journal of Pure and Applied Sciences, c. 10, sy. 1, ss. 25–36, 2024, doi: 10.29132/ijpas.1387246.
ISNAD Toptaş, Yeliz - Aksoğan Korkmaz, Aydan. “BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ”. International Journal of Pure and Applied Sciences 10/1 (Haziran 2024), 25-36. https://doi.org/10.29132/ijpas.1387246.
JAMA Toptaş Y, Aksoğan Korkmaz A. BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ. International Journal of Pure and Applied Sciences. 2024;10:25–36.
MLA Toptaş, Yeliz ve Aydan Aksoğan Korkmaz. “BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ”. International Journal of Pure and Applied Sciences, c. 10, sy. 1, 2024, ss. 25-36, doi:10.29132/ijpas.1387246.
Vancouver Toptaş Y, Aksoğan Korkmaz A. BAZI TÜRK LİNYİTLERİNİN TERMAL ANALİZ YÖNTEMİYLE KİNETİK OLARAK DEĞERLENDİRİLMESİ. International Journal of Pure and Applied Sciences. 2024;10(1):25-36.

154501544915448154471544615445